1. Kerr Modulator: Suppose an intensity modulator is constructed by placing an isotropic Kerr medium between two polarizers, as in Saleh and Teich Fig 18.16. Calculate the output intensity as a function of applied voltage, in terms of the medium length ℓ, medium thickness d, index of refraction n, Kerr coeffcient s, and light wavelength λ_{0}. (If you want to worry about polarization details, assume that the light propagates along z and is polarized along x, the electric field is applied along x, and you are using the $s_{x x x x}$ Kerr coefficient. The polarizers are at $\pm 45^{\circ}$ to x.)
2. Biaxial Crystal: Consider a simple example of light propagating through a biaxial crystal, where $n_{x} \neq n_{y} \neq n_{z}$. Suppose the propagation direction of the light is $\hat{\mathbf{k}}=\sin \theta \hat{\mathbf{x}}+\cos \theta \hat{\mathbf{z}}$. Determine the directions and effective indices for the two principal polarizations of the light.
3. Designing a Modulator: In section 18.1-B (see figure 18.1-5), Saleh and Teich describe how the electro-optic effect can be used in a Mach-Zehnder interferometer to construct a intensity modulator integrated with a fiber-optic system. Design a modulator of this type using the material LiNbO_{3}. Select the orientation of the crystal and the polarization of the guided wave so as to obtain the smallest possible half-wave voltage V_{π}. Note that for an integrated modulator, it is not easy to apply an electric field along the direction of light propagation, so you can assume a transverse field configuration.

Example 18.2-1 has some discussion of the properties of LiNbO_{3}. However, to be complete, you should consider all possible system configurations, and not just the one discussed in the example.

If the active region has length $\ell=1 \mathrm{~mm}$ and width $d=5 \mu \mathrm{~m}$, and the wavelength $\lambda_{0}=850 \mathrm{~nm}$, calculate V_{π}. The refractive indices for LiNbO_{3} are $n_{o}=2.29$ and $n_{e}=2.17$, and the non-zero electro-optic coefficients are $r_{33}=30.9 \mathrm{pm} / \mathrm{V}, r_{13}=8.6$ $\mathrm{pm} / \mathrm{V}, r_{22}=2.4 \mathrm{pm} / \mathrm{V}$, and $r_{51}=28 \mathrm{pm} / \mathrm{V}$.
4. Electro-optic Phase Modulation: The electro-optic effect can also be used for frequency modulation. For example, suppose a LiNbO_{3} crystal of length ℓ is oriented with a laser beam propagating along x and polarized along z. An oscillating electric field $E_{1} \cos \Omega t$ is applied along the z direction. The electric field of the laser itself oscillates as $E_{L}=E_{0} \exp i\left(\omega_{0} t-k x\right)$.
(a) Show that after exiting the crystal, the laser field has a time dependence of $\exp i\left(\omega_{0} t+\delta \cos \Omega t\right)$, and determine δ.
(b) If the "instantaneous" frequency of the laser $\omega(t)$ is defined by

$$
\frac{d E_{L}}{d t}=i \omega(t) E_{L}
$$

find the range of instantaneous frequencies sampled by the laser output.
(c) In the limit $\delta \ll 1$, show that the laser electric field can be expressed as a sum of three components oscillating at $\omega_{0}, \omega_{0}+\Omega$, and $\omega_{0}-\Omega$, and find their relative amplitudes.

Frequency modulation can thus be thought of either as a variation of the instantaneous frequency, or as the generation of additional frequency components at $\omega_{0} \pm \Omega$. (This is a little counter-intuitive when δ is small, since the instantaneous frequency never actually equals $\omega_{0} \pm \Omega$!)

822 students only:

5. Strong Phase Modulation: In problem 4, if δ is not small then the modulated optical field can still be expressed as

$$
E_{L}=E_{0} \sum_{n} A_{n}(\delta) \exp i\left(\omega_{0} t+n \Omega t\right) .
$$

Determine the coefficients A_{n}. How large must δ be to have equal amplitudes for the "carrier" at $n=0$ and the first "sidebands" at $n= \pm 1$? (Hint: the answer involves Bessel functions.)

