1. Gaussian Beam Waists Suppose a Gaussian laser beam with wavelength λ and total power P is focused in the plane $z=0$ with a waist W_{0}. The beam is directed at a target a distance d away.
(a) Find the value of W_{0} such that the peak intensity on the target is maximized.
(b) Evaluate this W_{0} if $\lambda=532 \mathrm{~nm}$ and for $d=1 \mathrm{~cm}, 1 \mathrm{~m}$, and 100 m .
2. Gaussian Beam Identification (Saleh and Teich Problem 3.1-2) A Gaussian beam of wavelength $\lambda=10.6 \mu \mathrm{~m}$ (emitted by a CO_{2} laser) has widths $W_{1}=1.699 \mathrm{~mm}$ and $W_{2}=3.38 \mathrm{~mm}$ at two points separated by a distance $d=10 \mathrm{~cm}$. Determine the possible locations of the waist and the waist radius.
3. Imaging a Gaussian Beam Suppose a Gaussian laser beam with wavelength $\lambda=$ 532 nm is collimated with a beam waist of $50 \mu \mathrm{~m}$ at the point $z=0$. If a thin lens with focal length 25 mm is placed at $z=35 \mathrm{~mm}$, find the position and beam waist for the resulting focus. Compare the focal position with that predicted by geometrical optics for (i) a collimated input beam and (ii) input light diverging from a focus at $z=0$
4. Retro-reflection of a Gaussian Beam A Gaussian laser beam with wavelength $\lambda=$ 670 nm is focused with a beam waist of $200 \mu \mathrm{~m}$, and then reflects off a mirror located 10 cm away. What radius of curvature for the mirror is required to have the reflected beam refocus to the same point? Compare your result to the radius of curvature of the beam itself at the location of the mirror.

822 students only
5. Gaussian Beams and Ray Matrices Suppose that when a Gaussian laser beam passes through an optical system, its complex beam radius q is modified according to

$$
\begin{equation*}
q_{\text {out }}=\frac{A_{1} q_{\text {in }}+B_{1}}{C_{1} q_{i n}+D_{1}}, \tag{1}
\end{equation*}
$$

while a second system modified q as

$$
\begin{equation*}
q_{\text {out }}=\frac{A_{2} q_{\text {in }}+B_{2}}{C_{2} q_{\text {in }}+D_{2}}, \tag{2}
\end{equation*}
$$

Show that a beam passing consecutively through the two systems will have

$$
\begin{equation*}
q_{\text {out }}=\frac{A_{3} q_{\text {in }}+B_{3}}{C_{3} q_{i n}+D_{3}}, \tag{3}
\end{equation*}
$$

with

$$
\left[\begin{array}{ll}
A_{3} & B_{3} \tag{4}\\
C_{3} & D_{3}
\end{array}\right]=\left[\begin{array}{ll}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right]\left[\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right]
$$

This establishes the correspondence between ray matrices and Gaussian beam propagation.

