
Freedom of Assembly

Julian V. Noble

January 5, 2001

Abstract

Many programmers have found the development and testing of
assembly language subroutines easier within a Forth environment than
using more conventional tools. Subroutines created this way can then
be transformed to a form compatible with commercial assemblers,
and linked to calling programs in mainstream languages. This article
illustrates how to do this with three example subroutines of increasing
complexity, using a popular public domain Forth running under MS
Windows. The third example shows how to create tools not available
with conventional assemblers.

Introduction

Programing in assembly language is no task for the faint of heart. Machine
language programs are hard to compose, hard to get right, hard to under-
stand, hard to maintain, and hard to port to other computers. By contrast,
high level programming languages provide standardized data structures and
operations that accomodate the needs of most users. Much effort has been de-
voted to developing optimizing compilers that generate machine code whose
speed approaches the best efforts of wizard hackers. Such facts of life have
led to a common notion that machine language programming is obsolete [1].

1

But sometimes we encounter problems with no reasonable high level so-
lution. Interfacing external devices; trying to perform an operation trivial in
machine code (but time-consuming, circuitous, or even impossible in a high
level language); or seeking ultimate speed lead us—however reluctantly—to
exercise our constitutional right to assemble.

Modern programming environments let us link high level programs with
machine code procedures that have been assembled separately (that is, out-
side the compilation process), thereby combining the ease of high level pro-
gramming with the advantages of assembler. The usual procedure is

1. program, test and debug everything possible in high level code (clearly
this does not apply to operations not provided by the language);

2. using a profiler or algorithmic analysis, determine which portions can
be rewritten profitably in machine language;

3. assemble, link and test the hand-coded parts;

4. repeat ad nauseam.

Step 3 is generally so arduous as to relegate assembly language to the category
of desperate measures.

If only there were a way to test fragmentary assembly language subrou-
tines in isolation—to assemble and run them as separate programs. This
would be analogous to the ability of certain interpreted languages (e.g., Ba-
sic, Lisp or Forth) to execute program fragments. Testing isolated machine
code fragments telescopes the assemble—compile—link—test—debug cycle
into a single stage, eliminating Step 3 entirely. Once satisfied with our ma-
chine code fragments we could concatenate them, (re)assemble them, and link
them to the main program, testing the result at most once or twice more.
To be sure, some environments provide “debuggers”—mini-assemblers that
operate in an interpretive mode. For example, DEBUG.EXE, available on DOS
and WindowsTM systems, can assemble and single-step through simple 16-bit
machine code routines. It can even create standalone *.com executables. But
I would not try to replace MASMTM or TASMTM with DEBUG.EXE or its 32-bit
cousins.

2

Forth programmers know a shortcut that makes machine language pro-
gramming nearly as simple as high level programming. As it happens, Forth
is my favorite language, but not everyone likes it. And often enough, con-
straints imposed by management preclude using Forth in commercial applica-
tions. But for assembling and testing isolated machine code fragments, Forth
is unrivaled. Thus you should consider it for rapid development and testing,
even if you intend to link the end product to Fortran, C or C++. And if
you just want to learn assembly language, a Forth environment provides the
most nearly painless way I have yet discovered.

Assembly coding in Forth is easy because in Forth everything is either a
literal number or a subroutine (called a “word” in Forth-speak) that executes
when it is named [2]. We define new subroutines either by threading together
previously defined words (“high-level” definition) using the machine stack as
a communications interface; or else by using the built-in assembler to define
subroutines directly in machine code.

A Forth subroutine executes when it is typed in at the console. Subrou-
tines defined in high-level Forth or in assembler appear identical to the user.
Here is an example:

3 4 5 * + . <cr> 23 ok

The Forth interpreter seeks the strings 3, 4 and 5 in the dictionary of previ-
ously defined words, but fails (they are numbers, not subroutines). Therefore
it converts them to numbers and pushes them on the stack. The words * and
+ are in fact subroutines (machine-coded primitives). The interpreter finds
them in the dictionary and executes them successively, leaving the result (23)
on the stack. The subroutine dot (.) consumes the top number on the stack
and displays it to the console.

Alternatively I could define a new subroutine that concatenates multipli-
cation and addition:

: *+ * + ; <cr> ok

If I then type in

3

3 4 5 *+ . <cr>

I will see the same result (23 and an ok) displayed to the console.

But suppose I preferred to define *+ directly in machine language. I would
type in (perhaps omitting the comments)

CODE *+ (a b c -- b*c+a) \ stack: before -- after

mov ecx, edx \ save edx register because mul alters it

pop eax \ get item b; item c (TOS) is already in ebx

mul ebx \ integer multiply-- c*b -> eax (accumulator)

pop ebx \ get item a

add ebx, eax \ add c*b to a -- result in ebx (TOS) --done

mov edx, ecx \ restore edx

next, \ terminating code for Forth interpreter

END-CODE ok

3 4 5 *+ . 23 ok

The above machine-language version (defined using CODE and END-CODE) ap-
pears the same to the user as the high level version defined with colon and
semicolon. (Parts of the code are specific to the internal workings of the
Forth I am using. I will discuss this further below.)

Some C/C++ compilers provide in-line assemblers: for example, Mi-
crosoft C/C++ 7.0+ permits machine code in-lining using the compiler di-
rective asm{, whereas Borland compilers provide the plain directive asm

[3]. Forth does much more than mere code in-lining. First, Forth provides
all the power of a stand alone assembler (which the C/C++ in-line assembler
certainly does not). If a feature you are used to is missing from the Forth
assembler, you can always add it because Forth is extensible. Second, as-
sembly in Forth is direct. When you type in a CODE subroutine, it compiles
instantly and is then ready to run from the command line. With C or C++
you must compose, compile and execute a more elaborate complete program,
that includes both your in-line code and a program to exercise it, before you
can tell whether it works.

4

Forth assemblers are written in Forth, hence operate the same way as any
other set of Forth words. Assembler mnemonics such as mul ebx install the
op-code(s) of the corresponding machine instructions in the body of a new
CODE definition. The examples in this article were composed using the popu-
lar Windows-based, public domain Win32Forth [4], whose built-in assembler
is Jim Schneider’s 486asm.f; however, assembly code works similarly in all
Forths, with only minor differences arising from implementation details.

Win32Forth’s decompiler exhibits the machine code of its primitive ker-
nel words, a major pedagogical advantage. Primitives provide convenient
examples both of the assembler’s operation, and of how to use Intel 80486+
machine code to perform simple operations. Working within the Win32Forth
environment provides greater than average safety, since memory access is in
protected mode. For example, my first attempt at defining *+ in CODE was

CODE *+ (a b c -- b*c+a) \ stack: before -- after

pop eax \ get item b; item c (TOS) is already in ebx

mul ebx \ integer multiply-- c*b -> eax (accumulator)

pop ebx \ get item a

add ebx, eax \ add c*b to a -- result in ebx (TOS) --done

next, \ terminating code for Forth interpreter

END-CODE ok

When I tried to run this version it failed, with the protected-mode exception
message:

. .

EXCEPTION: ACCESS_VIOLATION

Registers:

Eax: 5538h

Ebx: Ch top of data stack

Edx: 0h

Ecx: 77553Ch

Esi: IP 555Ch image relative

Edi: IMAGE 770000h Forth’s base address

Esp: SP@ FFEDDDD0h image relative

5

Ebp: RP@ FFEDFCF4h image relative

Eip: PC 553Dh image relative

RETURN STACK[4]: ?STACK+0 _INTERPRET+21 QUERY-INTERPRET+2 CATCH+14

At forth word: DEPTH

. .

To find the bug, I decompiled the Forth primitives * and + by typing in
“see *” and “see +”, to which the system responded

* IS CODE

1490 8BCA mov ecx , edx

1492 58 pop eax

1493 F7E3 mul ebx

1495 8BD8 mov ebx , eax

1497 8BD1 mov edx , ecx

ok

and

+ IS CODE

EC0 58 pop eax

EC1 03D8 add ebx , eax

ok

It turned out that I had forgotten that integer multiplication spills over into
the edx register. But Win32Forth wants this register (and several others) to
be preserved (otherwise it returns control to some random place in memory).
Obviously one must save edx before doing anything else, and restore it just
before leaving the subroutine.

There is a moral here: assembly language programming is like walking a
high wire without a safety net. It is absolutely essential to know what infor-

6

mation a calling program expects to have preserved by a called subroutine;
as well as how any instruction affects the state of the cpu.

This article provides three examples of machine code programming in a
Forth environment: the subroutine UCASE converts all lower-case letters in
a string to upper case, leaving digits and punctuation alone; }}inmostLU
replaces the inner loop of the LU algorithm; and new point calculates a step
in the Runge-Kutta solution of a ballistics problem. The third example is
especially interesting because it led me to add macro capabilities as well as
a simple formula parser to the existing assembler.

In what follows I assume the reader is familiar with Intel 80x86 assembly
language mnemonics. These can be found in various Intel publications [5],
as well as in books on assembly language programming for the Intel family
of chips [6].

Case conversion

Many libraries provide a function for converting a string to all upper case, or
all lower case letters, leaving digits and punctuation alone. The new Forth
ANS standard [7] happens not to require such a routine, although most Forths
employ a word analogous to UCASE in their compiling mechanisms.

The first step is to choose our approach. Different languages manage
strings in different ways. Such linguistic differences demand custom-tailored
CODE subroutines. Additionally, machine code subroutines intended for link-
ing to programs in high-level languages require language-specific “boiler-
plate” headers and footers. The language reference manual usually specifies
such boiler-plate.

For simplicity we use the C convention: we store an ASCII string of N
characters as N +1 contiguous bytes in memory, with the N +1 ’st (terminal)
byte set to 0. We reference a string by the address of its first character. To
decide how to proceed, we write the case-changing subroutine initially in
high level Forth. (The auxiliary Forth words $0" and $0.—respectively, to
create and display 0-terminated strings—are non Standard so I define them

7

in Appendix A.) Many languages implement string-translation functions like
UCASE with a translation table. The routine simply steps through a string
character by character, replacing each by the corresponding value from the
table. I exhibit this algorithm below:

: char_table: (size --) \ create an ASCII character table

CREATE 0 DO I C, LOOP ;

: replace (char.n’ char.0’ char.n char.0 base_adr --)

\ replace a seqence char.0-char.n in a table by char.0’-char.n’

LOCALS| base_adr char.0 char.n char.0’ offset |

char.0’ char.0 - TO offset

char.n 1+ char.0 \ loop limits

DO I offset + I base_adr + C! LOOP ;

256 char_table: ucase_table

char Z char A char z char a ucase_table replace

: >ucase (offset -- char) CHARS ucase_table + C@ ;

: ucase (c-adr --)

LOCALS| adr | (--)

BEGIN \ work thru string from left

adr C@ (-- char) \ get character

?DUP (-- char char | 0) \ dup if <> 0

WHILE (-- char) \ skip if TOS = 0

>ucase (-- char’)

adr C! \ replace modified character

adr 1+ TO adr (--) \ incr. adr

REPEAT \ loop back to BEGIN

;

\ see Appendix A for $0" and $0.

$0" this + is A % lcase STring" UCASE ok

pad $0. THIS + IS A % LCASE STRING ok

The table method translates easily to assembler, for example using the spe-
cial Intel instruction xlat, but we pursue it no further because standard
references cover it adequately.

8

If we cannot spare 256 bytes of memory for a translation table, we can
test whether each character is a terminating 0, a lower case letter or “other”.
If it is 0, exit—we are done. If it is a lower case letter, change it to upper
case; otherwise do nothing. The actual switch from lower– to upper case
can be accomplished by subtracting 32d from the ASCII character code of
the letter, since the upper case letters have codes 32d smaller than their
corresponding lower case values:

\ environmental dependence: assumes ASCII encoding

: lcase? (char -- flag) \ true if lower case

DUP [CHAR] a < (char f1) \ true if char < "a"

SWAP [CHAR] z > (f1 f2) \ true if char > "z"

OR (not[flag]) \ combine flags

NOT ; \ logical not

: ucase (c-adr --)

LOCALS| adr | (--)

BEGIN \ work from left to right thru string

adr C@ (char) \ get character

DUP 0<> (char flag)

WHILE

DUP lcase? (-- char flag)

32 AND (-- char n=[32 AND flag])

- \ subtract 32 from lcase letters

adr C! \ replace modified character

adr 1+ TO adr (--) \ inc adr

REPEAT \ loop back to BEGIN

;

Note that the words lcase? and ucase compute results rather than
deciding them [8]. That is, ucase could have been coded with a branch:

lcase? IF 32 - adr C! ELSE DROP ENDIF

Avoiding the branch means we replace every character, not just those whose
case we change. (The translation-table approach shares this disadvantage.)

9

However, tests show that text input is predominantly lower case; the time
consumed in the hypothetical branch dominates the superfluous store opera-
tions on many computers. (On older cpu’s branches consume many machine
cycles because they stall the pipeline. Avoiding branches then really saves
time. But advanced cpu’s have multiple pipelines and branch prediction, so
branch avoidance may, paradoxically, be slower than an explicit branch—this
is why you must test every idea.)

Now test our Forth subroutine:

$0" this + is A % lcase STring" UCASE

PAD $0. THIS + IS A % LCASE STRING ok

We translate to assembly language in parts, beginning with lcase? . Note
that in Win32Forth, as in many other Intel-based Forths, the top of the stack
(TOS) is cached in the ebx register; the first pop ebx instruction is therefore
superfluous in Forth, but will be necessary in a C-compatible subroutine.
We give the CODE routine a different name so we can compare it with the
high-level one:

CODE lcase?C (char -- flag) \ timings: Pentium 486

\ pop ebx \ necessary with C 1 1

mov eax, ebx \ copy TOS to accum. 1 1

sub eax, # char a 1- \ char < a 0 1

mov ecx, edx \ save edx 1 1

sub ebx, # char z 1+ \ char > z 0 1

xor eax, ebx \ neg iff either neg 1 1

cdq \ sign eax -> edx 2 3

mov ebx, edx \ edx to TOS 1 1

mov edx, ecx \ restore edx 1 1

\ total cycles: 8 11

next,

END-CODE

Test it (note that “true” has all bits set and therefore is displayed as –1 in
systems with 2’s-complement arithmetic):

10

CHAR A DUP . lcase?C . 65 0 ok

CHAR a DUP . lcase?C . 97 -1 ok

CHAR z DUP . lcase?C . 122 -1 ok

CHAR & DUP . lcase?C . 38 0 ok

The subroutine works as advertised.

We would next like to be sure the CODE version is indeed faster than
the high-level one. Thus we employ the software timer in Win32Forth to
time multiple repetitions (a software timer running under Windows cannot
achieve greater precision than about ±0.05 seconds; on a 150 MHz machine
this uncertainty represents ±4 × 104 iterations of the slowest version of this
code):

\ Tests performed on a 150 MHz Pentium-class machine.

CODE nuttin’ \ do-nothing code to time an empty loop

next,

END-CODE

: test0 time-reset \ empty loop

0 do [char] a nuttin’ drop loop .elapsed ;

: test1 time-reset \ hi-level test

0 do [char] a lcase? drop loop .elapsed ;

: test2 time-reset \ code version

0 do [char] a lcase?C drop loop .elapsed ;

100000000 test0 Elapsed time: 00:00:22.740 ok

100000000 test1 Elapsed time: 00:02:03.530 ok

100000000 test2 Elapsed time: 00:00:26.750 ok

We see that 108 repetitions of the high-level code takes 101 seconds (exclusive
of loop bookkeeping, putting a number on the stack, and dropping it again),
whereas the CODE version runs in 4.0 sec, about 25 times faster. The number
of cpu cycles per iteration of lcase?C is about 6, suggesting the parallelism
of the cpu is slightly better than advertised.

To continue translating UCASE we must decide how to implement a loop.
We can synthesize an indefinite loop using tests and jumps (jz, jnz, etc.);

11

or a definite loop using the Intel loop instruction. The latter would be
appropriate for Forth- or Basic-like counted strings, but not for C-like 0-
terminated strings. Therefore we employ jumps:

. .

HEX \ switch base to hexadecimal

CODE ucaseC (42 bytes)

\ header section

\ pop ebx \ needed in C version

push edx \ save edx -- maybe unneeded in C

\ body section timings: Pentium 486

L$1: mov cl, [ebx] [edi] \ get character 1 1

and ecx, # 000000FF \ set bits 8-31 to 0 1 1

\ test section

jz L$2 \ if char=0, exit 1 3

mov eax, ecx \ char -> accum. 1 1

sub eax, # char a 1- \ char < a ? 1 1

sub ecx, # char z 1+ \ char > z ? 1 1

xor eax, ecx \ neg if either neg 1 1

cdq \ sign eax -> edx 2 3

\ end test section edx = flag

\ replace character section

and edx, # 20 \ 32 if lcase, 0 else 1 1

sub byte [ebx] [edi], dl \ 2 3

\ end replace char section

inc ebx \ ebx = ebx + 1 1 1

jmp L$1 \ unconditional jump 1 3

\ end body section back to L$1

\ footer section

L$2: pop edx \ restore edx may not be necessary

pop ebx \ pop to TOS -- delete in C version

next, \ absent from C version

12

END-CODE

DECIMAL \ switch base back to decimal

. .

The body of the subroutine is hard to follow even with detailed comments
(which is why we prefer high level language to assembler), but it is essentially
the same as the high level definition: step through the string, testing and
replacing lower-case letters, until it encounters the terminal 0. A machine
code subroutine additionally needs a preamble, or “header”, that saves regis-
ters that need saving, and places initial data in appropriate registers. It also
needs an epilogue, or “footer” that restores registers and exits gracefully.

Testing and timing as before, we have

\ Tests performed on a 150 MHz Pentium-class machine.

$0" this + is A % lcase STring" ucasep ok

pad $0. THIS + IS A % LCASE STRING ok

: test0 time-reset 0 DO DUP DROP LOOP DROP .elapsed ; ok

: test1 time-reset 0 DO DUP ucase LOOP DROP .elapsed ; ok

: test2 time-reset 0 DO DUP ucasec LOOP DROP .elapsed ; ok

pad 10000000 test0 Elapsed time: 00:00:01.750 ok

pad 1000000 test1 Elapsed time: 00:00:51.360 ok

pad 10000000 test2 Elapsed time: 00:00:21.470 ok

The tests give running times of about 5.1 × 10−5 and 2.0 × 10−6 seconds
per iteration, respectively, for the high-level and assembler versions, roughly
a factor of 26 speedup. The time per character in the assembler version is
about 7.6 × 10−8 seconds, or about 11 machine cycles. The clock count is
14, so again the cpu is slightly better than advertised. The translation table
method (using jumps rather than xlats) executes in 6-8 cycles per character
but requires about 240 more bytes of storage—yet another example of the
tradeoff between storage space and execution time.

13

Inner loop in LU

The LU algorithm for solving linear equations [9] has an inner loop that
appears in two places. The high level Forth code for this loop is

: }}inmostLU (a{{ I0 J0 Limit --) (f: sum -- sum’)

LOCALS| Limit J0 I0 a{{ |

Limit 0 DO f" a{{ I0_I }} * a{{ I_J0 }}" F- LOOP ;

The above code, simple though it is, becomes rather involved when we try
to translate it to Intel machine code because of the paucity of available
registers. It therefore behooves us to compute certain addressing constants
before entering the loop; that is, we should rewrite }}inmostLU to expect
these constants on the stack.

: }}inmostLU (f: sum -- sum’)

(a[I0,Limit] a[Limit,J0] #cols*length length Limit --)

\ length is the size of the matrix element in bytes

\ f" sum = sum - a{{ I0_I }} * a{{ I_J0 }}"

LOCALS| Limit step1 step2 base_adr1 base_adr2 |

0 Limit DO base_adr2 F@ base_adr1 F@ F* F-

base_adr2 step2 - TO base_adr2 \ dec base_adr2

base_adr1 step1 - TO base_adr1 \ dec base_adr1

-1 +LOOP

;

When writing the assembler version we can then put as many as possible into
registers, accessing the rest directly from the stack. Another point is that
}}inmostLU embodies a definite loop so we can use the Intel loop instruction.
The count is placed in the ecx register and is decremented on each iteration
until it reaches zero. So we should rewrite the high level version to reflect
this also. Finally, we need to keep in mind the array storage convention.
The Forth Scientific Library project has adopted the C-like convention that
arrays are stored row-wise, rather than column-wise as in Fortran. Thus if
we wish to link this subroutine with a Fortran version of the LU algorithm,

14

we would need either to transpose the matrix before beginning; or better, to
rewrite }}inmostLU to assume column-wise arrays.

The assembler version will then have the structure

CODE }}inmostLU (f: sum -- sum’)

(a[I0,Limit] a[Limit,J0] #cols*length length Limit --)

\ this version uses 64-bit reals

\ header section

\

\ loop section timings: Pentium 486

L$1: fld [eax] [edi] (fpu: sum a[I0,I]) 1 3

fmul [ebx] [edi] (fpu: sum a[I0,I]*a[I,J0]) 3/1 14

sub eax, esi \ eax = edx - #cols*length 1 1

sub ebx, edx \ ebx = ebx - length 0 1/3

\ subtract because we are counting down!

fsubp st(1), st (fpu: sum’) 3/1 8-20

loop L$1 5/6 6/7

\ footer section

\

END-CODE

The actual operations contained within the loop are simple: get one matrix
element, multiply it by another, and accumulate the products on the fpu
stack. The loop comprises a fetch, a multiply and an addition. The complete
code for this subroutine appears in Appendix B.

The innermost loop in the LU algorithm contains the only instructions
executed O(N3) times. Everything else is executed O(N2) times or fewer.
By rewriting this loop in machine code, we can solve large dense systems as
fast as or faster than, the code produced by the best optimizing compilers.
That high level Forth is 3 to 10 times slower than optimized Fortran or C
then becomes irrelevant, since the O(N3) term dominates the running time.

15

Ballistics problem

In my course, Computational Methods of Physics1, I have been using a ballis-
tics problem as a case study in the numerical solution of differential equations,
as well as function minimization. A cannon located at a specified latitude,
longitude and altitude fires a round shot of specified mass, diameter and
muzzle speed. The projectile is realistic: it experiences both air resistance
(that varies with air density, hence with altitude) and the Coriolis effect of
the Earth’s rotation. The problem is to find the elevation angle θ and direc-
tion of aim, ϕ that will hit a target whose distance, height and direction are
known, within a given tolerance2.

In order to achieve acceptable execution speed for experimenting with
various algorithms, I resorted to assembly code. Although the problem is
not in itself of general interest, I discuss it here because it led me to create
tools that might be helpful to anyone facing a big assembly job.

To simplify the problem, ignore the Coriolis effect (so that only the muzzle
elevation angle θ need vary); the equations of motion are then

v̇x = −D(y)vvx

v̇y = −D(y)vvy − g

ẋ = vx

ẏ = vy ,

where D(y) is the drag function and ẋ = dx
dt

. To reduce by one the number
of equations, change the independent variable from t to x:

d

dt
→ dx

dt

d

dx
≡ vx

d

dx
,

leading to

dvx

dx
= −D(y)v

1the URL for this course is http://Landau1.phys.virginia.edu/classes/551/
2This is where the minimizer comes in!

16

dvy

dx
= −D(y)v

vy

vx
− g

dy

dx
=

vy

vx
.

The inner routine, that advances the differential equation solver by one step,
was all that had to be translated to assembler. Here is what it looks like in
high-level Forth (using a FORmula TRANslator for clarity):

\ FORmula TRANslator: text between f" and " is treated

\ as a formula, parsed and translated into Forth, and compiled.

\ Thus f" kx = -xstep * drag1 " compiles the Forth code

\ xstep F@ drag1 F@ F* FNEGATE kx F!

: new_point

\ drag function

f" drag1 = D(y) * sqrt(Vx^2 + Vy^2)"

\ 1st Runge-Kutta step

f" kx = -xstep * drag1 "

f" ky = -xstep * (drag1 * Vy + g)/Vx"

f" dy = xstep*Vy/Vx"

\ drag function’

f" drag2 = D(y+dy) * sqrt((Vx+kx)^2+(Vy+ky)^2)"

\ 2nd Runge-Kutta step for V’s

f" (ky - xstep * (drag2 * (Vy + ky) + g)/(Vx + kx))/2"

f" (kx - xstep * drag2)/2"

\ update velocities

Vx f+!

Vy f+!

\ 2nd Runge-Kutta step for y

f" (dy + xstep * Vy/Vx)/2"

17

\ update coords

y f+!

\ optionally compute flight time: f" t = t + xstep/Vx"

f" x = x + xstep"

;

Clearly, converting so many equations to assembler is quite a chore. This
led me to invest in a time- and energy saving mini-compiler. As I had al-
ready written the FORmula TRANslator employed above, it seemed a small
additional step to write a translator that would generate Intel assembler
mnemonics, suitable for incorporating into CODE definitions. It turned out
to be surprisingly easy to do this. (The only difficulty I encountered was
a mental blind spot: I persistently overlooked the fact that dx is the name
of a register, so it cannot be used as the step size in an assembly language
differential equation solver!)

I call the code translator CTRAN. It can be found on the Computational
Methods Web page1, under the heading Forth system and example programs.
Basically, CTRAN provides two facilities to simplify creating large blocks of
assembly code:

• assembler macros to assemble functions inline;

• translation of simple algebraic formulas into assembler mnemonics.

To create the CODE version of new point I replaced all the f"s with cf" ;
and also replaced the initial : by CODE and the terminating ; by the phrase
next,~END-CODE. In the interest of simplicity CTRAN does not translate func-
tions or numeric literals. That is, CTRAN translates simple arithmetic expres-
sions incorporating (+, −, ×, ÷) and of course, arbitrary levels of parenthe-
ses. In the code that follows, drag and (f!) are macros. (The macro facility
is described in Appendix D, including definitions of drag and (f!).)

Putting all the pieces together, the CODE version of new point becomes

18

CODE new_point

\ Note: it is much faster to multiply than to divide on

\ the Pentium fpu.

cf" Vx" cf" Vy" cf" y" \ 1st Runge-Kutta step

drag (f!) drag1 \ drag1 = drag(Vx,Vy,y)

cf" kx = -xstep * drag1"

(1/f) Vx (f!) invVx \ invVx = 1/Vx

cf" dy = xstep * Vy * invVx" \ -- eliminates 1 division

cf" ky = -xstep * ((drag1 * Vy) + g) * invVx"

cf" Vxp = Vx + kx" \ 2nd R-K step

cf" Vyp = Vy + ky"

cf" Vxp" cf" Vyp" cf" y+dy"

drag (f!) drag2 \ drag2 = drag(Vxp,Vyp,y+dy)

cf" Vx = (kx - xstep * drag2) * half + Vx"

cf" Vy = (ky - xstep * ((drag2 * Vyp) + g)/Vxp) * half + Vy"

cf" y = (dy + xstep * Vyp/Vxp) * half + y"

cf" x = x + xstep" \ update coords

\ cf" t = t + xstep/Vx" (optional)

next,

END-CODE

I assure the reader the above has been tested, really works, and reduces
the run time about 11-fold. Decompiling via see new point produces two
pages of vertical-format assembly code. It would have been quite a chore to
define and test this much code, but translating formulas with cf" reduced the
subroutine to manageable proportions. The result is also far more readable
than assembly code, no matter how well formatted and commented.

19

Your right to assemble

To summarize, assembly-coded routines have two advantages over high-level
routines: they can be faster; and they can enable you to do things the de-
signer forgot to include in your favorite language. Assembler has several
disadvantages as well. Foremost is lack of portability: machine code routines
must be rewritten for each new operating system and each new cpu. Second,
they are harder to maintain than high level code. And finally, they are harder
to compose and debug.

Using Forth to develop and test assembly language routines interactively
takes much of the sting out of the issues of design, test and maintainance.
The }}inmostLU example exhibited the value of rewriting the high level sub-
routine to simplify the data structures, thereby simplifying the algorithm.
(I suspect few if any optimizing compilers can redesign your algorithm to
improve the efficiency of its machine code.) The ballistics problem showed
how macros extend the capabilities of the assembler. But I have never heard
of a standalone assembler that incorporates an expression parser, or whose
macro facility lets you define one. The parser and macro facility condensed
the subroutine new point from two pages of raw assembly code to a half page
of formulas that can be understood at a glance. That is, good tools simplify
maintainance and documentation.

Since assemblers written in Forth are rather simple, it is easy to modify
them to recognize the mnemonics for—and generate the op-codes of—another
cpu. That is, Forth systems are often used for cross assembly, with the
resulting code being downloaded via a serial link to the “target” cpu. In
fact, many Forths have been “meta-compiled” (that is, ported from one host
to another) by first defining a simple cross assembler, then defining code
primitives for the target machine. Once the kernel of the new Forth runs on
the new machine, it is a simple matter to recompile the higher level words
that define a fully functional system.

Suppose you are ready to code something following the prescriptions of
this article. If your aim is speed I should caution you that good optimiz-
ing compilers produce code no worse than 1.5 to 2 times slower than the
tightest assembly code. (Greater improvements can be obtained with code

20

intended to run on Intel chips and their clones, than with code for RISC chips.
Intel CISC chips have few registers and arcane instruction sets, thereby of-
fering greater scope for cleverness. I discuss some optimization issues for
PentiumTM-class chips in Appendix D.) The old adage that it is usually bet-
ter to seek an improved algorithm than to optimize an existing one remains
true. (Of course if you are interfacing with a device or adding a function to
your programming language, this warning does not apply.)

Most compilers can output assembly listings generated during compila-
tion. Simply include an appropriate compiler “switch” (such as TASM’s –S)
when you invoke the compiler from the command line. Studying an assem-
bler listing is a good idea for two reasons: first, to learn about your system’s
requirements, register preservation, etc.; and second, if your goal is optimiz-
ing for speed, to see whether there is any point—if your compiler already
produces better code than you can, why bother?

Unless you are actually working in Forth, or using a Forth system for
cross-assembly, your interest in the Forth environment is primarily for de-
veloping and testing the concept. Eventually you must translate the Forth-
compatible file into something you can feed a stand-alone assembler to pro-
duce object code linkable to your preferred language. What I cannot tell you
(but you need to find out) is how a high level program in this language calls
a subroutine. That is, where does it put its arguments, which machine regis-
ters must it preserve, where does the result go? Will you be working in a true
32-bit environment or using 16-bit instructions? Are there long jumps (more
than 128 bytes backward or 127 bytes forward) in your subroutine? This
knowledge allows you to write the boiler-plate sections—the standard header
and footer—that instruct the assembler to create a subroutine appropriate
to your needs [1, 3].

Any text editor can replace the Forth comment delimiter \ with the usual
assembly-code comment delimiter ; . I have emphasized that one should write
routines in three sections: header, body and footer, where the header and
footer are language-specific and meant to be replaced. But there may be
other things you will have to modify to conform with your cpu and operat-
ing system. For example, even if your system is a Pentium running under
Windows, named variables in your system may be stored somewhere other
than the memory segment that Win32Forth references by the offset [edi].

21

(In Intel-ese [edi] tells the assembler to add the contents of the register
edi to an address.) A Fortran- or C-linkable subroutine’s arguments (as well
as local variables) will be stored in a “stack frame” and accessed by stack
offsets. It pays to study examples appropriate to your own circumstances,
for example from the assembler output of a compiled program.

All the high level code in this article will run without modification on
any Forth compliant with the 1994 ANS Standard. The macro generator
included with CTRAN is generic. The parser itself, however, outputs Intel code,
optimized for Pentium-class cpu’s, and conforming to the calling conventions
of Win32Forth. Hence you will have to modify the code generating sections
if you have a different cpu or Forth system in mind. (This is not hard—it is
a short program and I have marked the relevant places.)

Before I discovered Forth I spent endless hours developing and testing as-
sembly code subroutines in the conventional manner. All of these subroutines
were very simple—I would never have dared to tackle anything as compli-
cated as the ballistics problem. Using a Forth-based assembler, the most
complex subroutine I have yet written, a fast routine for Bessel functions,
took less than one hour from start to finish. The examples in this article
took even less time (not counting the time to write and test CTRAN—about 2
hours). I hope my experience encourages you to try the Forth route to rapid
code development.

22

Appendix A: C-style string functions

\ Forth subroutines for experimenting with C-style strings

: get_len (beg -- len)

DUP (beg beg)

BEGIN \ start indefinite loop

DUP C@ \ get char

0<> (beg adr flag)

WHILE 1+ (beg adr+1)

REPEAT (beg end+1)

\ loop until character is 0

- NEGATE (-- len) \ compute length

;

: $0" (-- adr) \ create 0-terminated string

[CHAR] " WORD \ get input

DUP ($adr $adr)

1+ PAD ROT C@ \ get length

DUP >R \ save it temporarily

CMOVE \ move text to scratchpad

PAD R> OVER + (-- beg end+1)

0 SWAP C! \ terminate with 0

;

: $0. (adr --) \ print 0-terminated string

DUP get_len TYPE ;

23

Appendix B: CODE definition of }}inmostLU

The register-starved Intel architecture imposes some juggling in the “pream-
ble” section of the code. The loop instruction has been replaced by the 3×
faster sequence dec ecx jnz L$1.

CODE }}inmostLU (f: sum -- sum’)

(a[I0,Limit] a[Limit,J0] #cols*#b #b Limit --)

\ this version uses 64-bit reals

\ header section

fld FSIZE FSTACK_MEMORY \ f: -> fpu:

pop ecx \ ecx = Limit

pop eax \ eax = #b

push esi (base2 base1 step2 esi)

push edx (base2 base1 step2 esi edx)

mov esi, 8 [esp] \ esi = #b * #cols

mov ebx, 12 [esp] \ ebx = a[Limit,J0]

mov edx, 16 [esp] \ edx = a[I0,Limit]

\ loop section timings: Pentium 486

L$1: fld [edx] [edi] (f: sum a[I0,I]) 1 3

fmul [ebx] [edi] (f: sum a[I0,I]*a[I,J0]) 3/1 14

sub edx, esi \ edx = edx - #b * #cols 2 2

sub ebx, eax \ ebx = ebx - #b 2 2

\ subtract because we are counting down!

fsubp st(1), st (f: sum’) 3/1 8-20

dec ecx 1 1

jnz L$1 1 1/3

\ footer section

pop edx \ restore saved registers

pop esi

add esp, # 8 \ clean off stacks

pop ebx

fstp FSIZE FSTACK_MEMORY \ fpu: -> f:

next,

END-CODE

24

Appendix C: example macro definitions

\ code for defining macros

: eval" POSTPONE S" POSTPONE EVALUATE ; IMMEDIATE

: (f!) \ store from fpu to a named fp variable

eval" fstp FSIZE"

BL TEXT COUNT EVALUATE

eval" [edi]" ;

: (f+!) \ add and pop fpu to a named fp variable

eval" fadd FSIZE "

BL TEXT COUNT 2DUP EVALUATE

eval" [edi] fstp FSIZE "

EVALUATE

eval" [edi] " ;

FVARIABLE two 2e0 two F!

FVARIABLE half 0.5e0 half F!

: (f2*) \ multiply fpu TOS by 2

eval" fmul FSIZE two [edi] " ;

: (f2/) \ divide fpu TOS by 2

eval" fmul FSIZE half [edi] " ;

\ drag function (note: inv_yscale = 1/yscale)

: drag (87: Vx Vy y -- drag~D1*V*exp[-y*inv_yscale])

eval" fmul FSIZE inv_yscale [edi] " (87: Vx Vy u=y*inv_yscale)

eval" fld1 "

eval" fchs " (87: Vx Vy u -1)

eval" fld st(1) " (87: Vx Vy u -1 u)

eval" fmul FSIZE half [edi] " (87: Vx Vy u -1 u/2)

eval" faddp st(1), st " (87: Vx Vy u -1+u/2)

25

eval" fmulp st(1), st "

eval" fld1 "

eval" faddp st(1), st " (87: Vx Vy 1-u+u^2/2)

eval" fxch st(2) " (87: 1-u+u^2/2 Vx Vy)

eval" fmul st " (87: 1-u+u^2/2 Vx Vy^2)

eval" fxch st(1) "

eval" fmul st "

eval" faddp st(1), st " (87: 1-u+u^2/2 Vx^2+Vy^2)

eval" fsqrt " (87: 1-u+u^2/2 V)

eval" fmulp st(1), st "

eval" fmul FSIZE D1 [edi] " (87: drag)

;

Appendix D: Remarks on code optimization

The Intel PentiumTM processor and its clones (AMD, Cyrix) has two instruc-
tion pipelines, labeled U and V, and employs branch-prediction algorithms
to guess intelligently which branch a process will take. This enables it to
avoid stalling most of the time—that is, having to flush all pre-fetched in-
structions from the queue and reload. Thus, in contrast with its predecessors,
programmers concerned to optimize code for the Pentium class of cpu’s need
not avoid branches resulting from decisions and loops.

Having two pipelines permits some parallelism of execution: certain com-
binations of instructions can be “paired” to execute simultaneously. Schmit
[3] describes a number of ways to achieve this pairing for optimal results.
The rules for pairing are somewhat arcane, and it is well to have Schmit’s
book or a similar reference handy.

The floating point unit offers less scope for optimizations exploiting par-
allelism. Floating point arithmetic instructions can be paired only with the
fxch instruction (and not all can be paired). The key points to remember
are:

• On the Pentium, multiplying (or adding/subtracting) the fpu stack-

26

top, st(0), by a memory operand is as fast as multiplying it by another
stack element (such as st(2), e.g.). Therefore many loading operations
can be dispensed with by writing

fld FSIZE a [ebi]

fmul FSIZE b [ebi]

fadd FSIZE c [ebi}

to compute a × b + c, rather than

fld FSIZE a [ebi]

fld FSIZE b [ebi]

fmulp st(1), st(0)

fld FSIZE c [ebi]

faddp st(1), st(0)

The first is 5
3

faster.

The expression to CODE parser, CTRAN has been designed to incorporate
this optimization.

• Floating point division is about 39 times slower than multiplication
on a Pentium. This is like the old IBM 704 I learned Fortran on in
1960: I was cautioned never to divide by a constant within a loop,
but to multiply by a variable holding the inverse of the constant, that
had been evaluated outside the loop. Given the enormous disparity in
execution time on the Pentium, this is still good advice. In fact, it
probably was not a good idea to change variables from t to x in the
ballistics problem, since the multiplications and additions involved in
solving a fourth differential equation are not nearly as time consuming
as the two divisions the “simpler” algorithm imposes!

• The quondam “fast” instruction fscale for multiplying or dividing
by a power of 2 should be avoided. It requires loading an integer
constant (the power) which will usually be popped from the fpu stack
afterward; executing fscale itself takes 21-32 clocks. Multiplying by
the appropriate power of 2 stored in memory is therefore much faster
(1 clock). The macros in Appendix C were designed with this in mind.

27

• A final optimization I have found useful is using the lea (“load effective
address”) instruction both for address arithmetic and for multiplying
integers by certain integers. The latter use is described in Schmit’s
book.

References

[1] See, e.g., Michael Abrash, The Zen of Code Optimization (The Coriolis
Group, Inc., Scottsdale, AZ, 1994) for an eloquent defense of assembly
language vs. high level language.

[2] J.V. Noble, “Adventures in the Forth Dimension”, Computing in Science
and Engineering, 2 #5 (2000) 6.

[3] Michael L. Schmit, Pentium Processor Optimization Tools, Academic
Press, Inc. (Cambridge, MA, 1995).

[4] Win32Forth is the brain-child of Tom Zimmer with contributions from
Andrew McKewan, Jim Schneider, Robert Smith Y.T. Lin and Andy
Korsak. It is readily available from the various Web sites, including
http://www.taygeta.com

[5] i486TM Microprocessor Programmer’s Reference Manual c©Intel Corpo-
ration 1990 (Osborne/McGraw-Hill, New York, 1990).

[6] See, e.g., L. Scanlon, Assembly Language Programming for the IBM
PC AT (Prentice Hall, New York, 1986); or J. H. Crawford and P.P.
Gelsinger, Programming the 80386 (SYBEX, Alameda, CA, 1987).

[7] A copy of the final draft of the ANS Forth Standard document, X3J14
dpANS-6 can be downloaded in several different machine-readable for-
mats, including F-PC hypertext, Microsoft WordTM, or HTML, from
the Web site http://www.taygeta.com .

[8] J.V. Noble, “Avoid decisions” Computers in Physics 5 #4 (1991) 386.

[9] W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vettering, Numer-
ical Recipes (Cambridge University Press, New York, 1986) p. 35ff.

28

Julian Noble is Professor of Physics at the
Department of Physics
University of Virginia
P.O. Box 400714
Charlottesville, VA 22904-4714

He may be contacted at jvn@virginia.edu .

His interests are eclectic, both in and out of physics.
His teaching philosophy is “no black boxes”.

29

	Introduction
	How Forth works
	Example: *+
	Buggy version of *+

	Case conversion
	Character table
	Uppercase

	No char table
	Uppercase

	Assembly version

	Inner Loop in LU algorithm
	High level Forth
	Code version
	Ballistics problem
	High level version
	Formula assembler

	Your right to assemble
	Appendices
	A: C-style strings
	B: Code for }}inmostLU
	C: Example macros
	D: Code optimizations

	References

