Balls and Frisbees 1 Balls and Frisbees Balls and Frisbees 2

Question:

• A smooth, gentle river is flowing past a cylindrical post. At the sides of the post, is the water level higher, lower, or equal to its level in the open river?

#### Balls and Frisbees 3

## Observations About Balls and Frisbees

- · Balls slow down in flight
- · The faster a ball goes, the quicker it slows
- Spinning balls curve in flight
- Frisbees use air to support themselves

## Balls and Frisbees 4

## Aerodynamic Forces

- Drag Forces
  - push the object directly downstream
  - $-\operatorname{result}$  from slowing the fluid flow
  - transfer downstream momentum to the object
- Lift Forces
  - push the object at right angles to the flow
  - result from deflecting the fluid flow
  - transfer sideways momentum to the object

#### Balls and Frisbees 5

## Drag & Lift

- Surface friction causes viscous drag
- Turbulence causes pressure drag
- · Deflected flow causes lift
- Deflected flow causes induced drag

## Balls and Frisbees 6

## Perfect Flow Around a Ball

- Outward bend in front

   high pressure, slow flow
- Inward bend on sides – low pressure, fast flow
- Outward bend in back – high pressure, slow flow
- Pressures balance, so only viscous drag



#### Balls and Frisbees 7

## Question:

• A smooth, gentle river is flowing past a cylindrical post. At the sides of the post, is the water level higher, lower, or equal to its level in the open river?

#### Balls and Frisbees 8

## Onset of Turbulence

- · Rising pressure slows fluid
  - Fluid accelerates backward as pressure rises
     Fluid loses speed but its pressure rises
- Viscous drag slows flow near surface
   Surface layer of fluid loses total energy
   Fluid loses both speed and pressure
- If surface flow stops, turbulence ensues

#### Balls and Frisbees 9 Balls and Frisbees 10 Imperfect Flow, **Boundary Layer** Low Speeds · Pressure rises in front · Flow near surface forms "boundary layer" · Pressure drops on side At low Reynolds number (<100,000)</li> boundary layer is laminar · Big wake forms behind slowed by viscous drag · Wake pressure is At high Reynolds number (>100,000) approximately ambient - boundary layer is turbulent · Ball experiences large not slowed much pressure drag

#### Balls and Frisbees 11

# Imperfect Flow, High Speeds

- Pressure rises in front
- Pressure drops on side
- · Small wake forms behind
- Wake pressure is approximately ambient
- Ball experiences small pressure drag



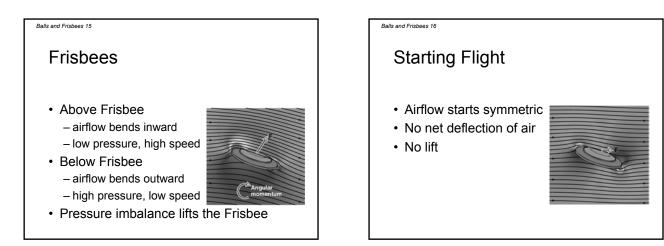
## Balls and Frisbees 12

## Tripping the Boundary Layer

- To reduce pressure drag
  - initiate turbulence in the boundary layer (trip)
  - delay flow separation on back of ball
    shrink the turbulent wake
- Examples: Tennis balls and Golf balls

#### Balls and Frisbees 13

## Spinning Balls, Magnus Force


- · Surface pulls flow with it
- One side experiences
   longer inward bend
- That side has lower pressure and faster flow
- · Overall flow is deflected
- · Magnus lift force

### Balls and Frisbees 14

# Spinning Balls, Wake Force

- · Surface pulls flow with it
- Wake is asymmetric
- · Overall flow is deflected
- · Wake deflection lift force





# Balls and Frisbees 17 Vortex Shedding Trailing airflow unstable Vortex peals away with ccw angular momentum Remaining airflow has cw angular momentum

#### Balls and Frisbees 18

# Stable lift

- After vortex is shed, Frisbee has lift
- Air is deflected downward overall
- Frisbee is pushed upward by air
- Airflow around Frisbee
   has angular momentum



Balls and Frisbees 19

# Summary About Balls and Frisbees

- The air pressures around these objects are not uniform and result in drag and lift
- Balls experience mostly pressure drag
- Spinning balls experience Magnus and Wake Deflection lift forces
- A Frisbee's airfoil shape allows it to deflect the air to obtain lift