Bouncing Balls

Bouncing Balls 3

Observations About Bouncing Balls

- Some balls bounce better than others
- Underinflated balls bounce poorly
- Balls don't bounce higher than they started
- Ball can bounce from moving objects

Bouncing Balls 5

Coefficient of Restitution

- Measure of a ball's liveliness.
- Ratio of outgoing to incoming speeds.

Coefficient of restitution =
Outgoing speed / Incoming speed

Question:

- If you place a tennis ball on a basketball and drop this stack on the ground, how high will the tennis ball bounce?
- To approximately its original height.
- Much higher than its original height.
- Much less than its original height.

Bouncing Balls 4

Bouncing from

Rigid, Motionless Surfaces

- Approaching ball has "collision" KE.
- During impact, ball has elastic PE.
- Rebounding ball has "rebound" KE.
- Some collision energy becomes thermal.
- "Lively" balls lose little energy.
- "Dead" balls lose much energy.
- In general: rebound KE < collision KE

Bouncing Balls 6

Bouncing from Elastic, Motionless Surfaces

- Both ball and surface dent during bounce.
- Work is proportional to dent distance.
- Denting surface stores \& returns energy.
- "Lively" surface loses little energy.
- "Dead" surface loses much energy.
- Surface has a coefficient of restitution, too.

Bouncing Balls 7

Bouncing from Moving Surfaces

- Incoming speed \rightarrow Approaching speed.
- Outgoing speed \rightarrow Separating speed.
- Coefficient of Restitution becomes:

Coefficient of restitution =
Separating speed / Approaching speed

Bouncing Balls 9

Ball and Bat

Part 2

- Approaching speed is $200 \mathrm{~km} / \mathrm{h}$.
- Baseball's Coefficient of Restitution: 0.55.
- Separating speed is $110 \mathrm{~km} / \mathrm{h}$.

Question:

- If you place a tennis ball on a basketball and drop this stack on the ground, how high will the tennis ball bounce?
- To approximately its original height.
- Much higher than its original height.
- Much less than its original height.

Bouncing Balls 8

Ball and Bat Part 1

- Ball approaches home ${ }^{\text {w }}$ plate at $100 \mathrm{~km} / \mathrm{h}$.
- Bat approaches pitcher at $100 \mathrm{~km} / \mathrm{h}$.
- Approaching speed is $200 \mathrm{~km} / \mathrm{h}$.

Bouncing Balls 10

Ball and Bat

Part 3

- Separating speed is 110 km/h.
- Bat approaches pitcher at $100 \mathrm{~km} / \mathrm{h}$.
- Ball approaches
 pitcher at $210 \mathrm{~km} / \mathrm{h}$.

Bouncing Balls 12

Bouncing's Effects on Objects

- Bouncing involves momentum transfer
- Momentum transferred while stopping
- Momentum transferred while rebounding
- A better bounce transfers more momentum
- Bouncing can involve energy transfer
- Together, these transfers govern bouncing - Identical elastic balls transfer motion perfectly

Bouncing Balls 13

Impact Forces

- Harder surfaces bounce faster
- Momentum is transferred faster
- Time is shorter, so force is larger
- No one likes bouncing off hard surfaces

Bouncing Balls 15

Summary About Bouncing Balls

- Each ball has a coefficient of restitution
- Energy lost in a bounce becomes thermal
- The surface can affect a ball's bounce
- Surfaces bounce, too.

Bouncing Balls 14

Ball's Effects

on a Bat

- Ball pushes bat back and twists it, too
- When ball hits bat's center of percussion, - backward and rotational motions balance. - handle doesn't jerk.
- When ball hits vibrational node
- bat doesn't vibrate.
- more energy goes into ball.

