

Garden Watering 2

Question:

- Water pours weakly from an open hose but sprays hard when you cover most of the end with your thumb. When is more water coming out of the hose?
- · When the hose end is uncovered
- · When your thumb covers most of the end

Garden Watering 3

Observations About Garden Watering

- · Faucets allow you to control water flow
- · Faucets make noise when open
- · Longer, thinner hoses deliver less water
- Water sprays faster from a nozzle
- Water only sprays so high
- · A jet of water can push things over

Garden Watering 4

Faucets: Limiting Flow

- Water's total energy limited by its pressure

 Maximum kinetic energy limited by total energy
 - Maximum speed limited by kinetic energy
- Water has viscosity (friction within the fluid)
 - Water at the walls is stationary
 - Remaining water slows due to viscous forces

Garden Watering 5

Viscous Forces

- Oppose relative motion within a fluid
- Similar to sliding friction waste energy
- Fluids are characterized by their viscosities

Garden Watering 6

Hoses: Limiting Flow

- Water flow through a hose:
 - Increases as 1/viscosity
 - Increases as 1/hose length
 - Increases as pressure difference
 - Increases as (pipe diameter)⁴
- · Poiseuille's law:

Garden Watering 7

Water Flow in a Hose

- · Flowing water loses energy to viscous drag
- · Viscous drag increases with flow speed
 - Faster flow leads to more viscous energy loss
 - Faster flow causes quicker drop in pressure

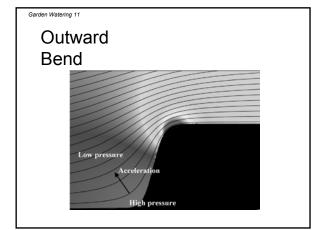
Garden Watering 8

Question:

- Water pours weakly from an open hose but sprays hard when you cover most of the end with your thumb. When is more water coming out of the hose?
- · When the hose end is uncovered
- · When your thumb covers most of the end

Garden Watering 9

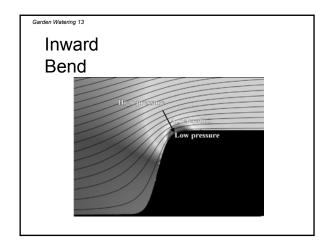
Accelerating Flows


- · Water in steady-state flow can accelerate
- Acceleration must be partly to the side – Forward acceleration would expand water
 - Backward acceleration would compress water
- Sideways acceleration
 - requires obstacles
 - causes pressure imbalances
 - causes speed changes

Outward Bend

Garden Watering 10

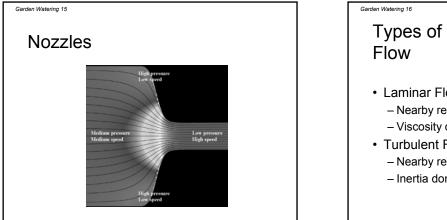
- Deflecting water away from a surface
 - $-\operatorname{involves}$ acceleration away from the surface
 - $-\operatorname{is}$ caused by an outward pressure gradient
 - higher pressure near surface
 - lower pressure away from surface
 - causes water to travel slower near the surface



Garden Watering 12

Inward Bend

- Deflecting water toward a surface
 - involves acceleration toward surface
 - is caused by inward pressure gradient
 - lower pressure near surface
 - higher pressure away from surface
 - causes water to travel faster near the surface



Nozzles: Speeding Water Up

- · Water passing through a narrowing
 - speeds up
 - experiences pressure drop
- · Water passing through a widening
 - slows down
 - experiences a rise in pressure

- Laminar Flow
 - Nearby regions of water remain nearby
 - Viscosity dominates flow
- Turbulent Flow
 - Nearby regions of water become separated
 - Inertia dominates flow

Reynolds Number

Garden Watering 17

- · Reynolds number controls type of flow
- · Below about 2300 : Laminar flow - Viscosity dominates
- Above about 2300 : Turbulent flow - Inertia dominates

Garden Watering 18

Water and Momentum

- · Water carries momentum
- Momentum is transferred by impulses: impulse =
 - pressure imbalance · surface area · time
- · Large transfers: long times, large surface areas, or large pressure imbalances
- Moving water can be hard to stop

Garden Watering 19

Summary About Garden Watering

- Total energy limits speed, height, pressure
- Nozzles exchange pressure for speed
- · Viscosity wastes energy of water
- Turbulence wastes energy of water
- Moving water has momentum, too