Violins and Pipe Organs

Violins and Pipe Organs 2

Question:

Sound can break glass. Which is easiest to break:

- A glass pane exposed to a loud, short sound
- A glass pane exposed to a certain loud tone
- A crystal glass exposed to a loud, short sound
- A crystal glass exposed to a certain loud tone

Violins and Pipe Organs 3

Observations About Violins and Pipe Organs

- They can produce different pitches
- · They must be tuned
- They sound different, even on same pitch
- · Sound character is adjustable
- Both require power to create sound
- Can produce blended or dissonant sounds

Violins and Pipe Organs 4

Strings as Harmonic Oscillators

- A string is a harmonic oscillator

 Its mass gives it inertia
 - Its tension gives it a restoring force
 - It has a stable equilibrium
 - Restoring forces proportional to displacement
- Pitch independent of amplitude (volume)!

Violins and Pipe Organs 5

String's Inertia and Restoring Forces

- String's restoring force stiffness set by – string's tension
 - string's curvature (or, equivalently, length)
- String's inertial characteristics set by – string's mass per length

Violins and Pipe Organs 6

Fundamental Vibration

- String vibrates as single arc, up and down

 velocity antinode occurs at center of string
 velocity nodes occur at ends of string
- · This is the fundamental vibrational mode
- Pitch (frequency of vibration) is – proportional to tension
 - inversely proportional to string length
 - inversely proportional to mass per length

Overtone Vibrations

- String can also vibrate as
 - two half-strings (one extra antinode)
 - three third-strings (two extra antinodes)
 etc.
- These are higher-order vibrational modes
- They have higher pitches
- · They are called "overtones"

Violins and Pipe Organs 8

String Harmonics Part 1

- · In a string, the overtone pitches are at
 - twice the fundamental frequency
 - One octave above the fundamental frequency
 - Produced by two half-string vibrational mode
 - three times the fundamental frequency
 - An octave and a fifth above the fundamental
 - Produced by three half-string vibrational mode
 - etc.

Violins and Pipe Organs 9

String Harmonics Part 2

- · Integer overtones are called "harmonics"
- Bowing or plucking a string tends to excite a mixture of fundamental and harmonic vibrations, giving character to the sound

Violins and Pipe Organs 10 Producing Sound

- Thin objects don't project sound well
 Air flows around objects
 - Compression and rarefaction is minimal
- Surfaces project sound much better
 - Air can't flow around surfaces easily
 - Compression and rarefaction is substantial
- Many instruments use surfaces for sound

Violins and Pipe Organs 11

Plucking and Bowing

- · Plucking a string transfers energy instantly
- · Bowing a string transfers energy gradually
 - Rhythmic excitation at the right frequency causes sympathetic vibration
 - Bowing always excites string at the right frequency
 - The longer the string's resonance lasts, the more effective the gradual energy transfer

Violins and Pipe Organs 12

Question:

Sound can break glass. Which is easiest to break:

- A glass pane exposed to a loud, short sound
- A glass pane exposed to a certain loud tone
- A crystal glass exposed to a loud, short sound
- A crystal glass exposed to a certain loud tone

Air as a Harmonic Oscillator

- A column of air is a harmonic oscillator
 - Its mass gives it inertia
 - Pressure gives it a restoring force
 - It has a stable equilibrium
 - Restoring forces proportional to displacement
- Pitch independent of amplitude (volume)!

Violins and Pipe Organs 14

Air's Inertia and Restoring Forces

- Air's restoring force stiffness set by – pressure
 - pressure gradient (or, equivalently, length)
- Air's inertial characteristics set by
 - air's mass per length (essentially density)

Violins and Pipe Organs 15

Fundamental Vibration Open-Open Column

- Air column vibrates as a single object
 Pressure antinode occurs at column center
 - Pressure nodes occur at column ends
- Pitch (frequency of vibration) is
 - proportional to air pressure
 - inversely proportional to column length
 - inversely proportional to air density

Violins and Pipe Organs 16

Fundamental Vibration Open-Closed Column

- Air column vibrates as a single object
 Pressure antinode occurs at closed end
 Pressure node occurs at open end
- Air column in open-closed pipe vibrates

 as half the column in an open-open pipe
 at half the formula formula pipe
 - at half the frequency of an open-open pipe

Violins and Pipe Organs 17

Air Harmonics Part 1

- In open-open pipe, the overtones are at
 - twice fundamental (two pressure antinodes)
 - three times fundamental (three antinodes)
 - etc. (all integer multiples or "harmonics")
- In open-closed pipe, the overtones are at – three times fundamental (two antinodes)
 - five times fundamental (three antinodes)
 - etc. (all odd integer multiples or "harmonics")

Violins and Pipe Organs 18

Air Harmonics Part 2

 Blowing across column tends to excite a mixture of fundamental and harmonic vibrations

Other Instruments

- Most 1-dimensional instruments – can vibrate at half, third, quarter length, etc.
 - harmonic oscillators with harmonic overtones
- Most 2- or 3- dimensional instruments

 have complicated higher-order vibrations
 harmonic osc. with non-harmonic overtones
- Examples: drums, cymbals, glass balls

Violins and Pipe Organs 20

Summary of Violins and Pipe Organs

- use strings and air as harmonic oscillators
- pitches independent of amplitude/volume
- tuned by tension/pressure, length, density
- · have harmonic overtones
- project vibrations into the air as sound