University of Virginia

Department of Physics

Physics 606: How Things Work II

Lecture #14 Slides:

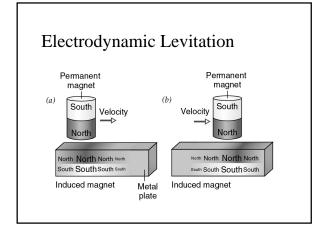
Magnetically Levitated Trains II

and

Flashlights

Electromagnetic Induction

- Changing magnetic field → electric field
- Electric field in conductor → current
- Current → magnetic field
- Induced magnetic field opposes the original magnetic field change (Lenz's law)


Levitation & Stability

- Unstable Levitation Schemes
 - Static permanent magnets
- Stable Levitation Schemes
 - Permanent magnets and contact
 - Dynamic stabilization with permanent magnets
 - Electromagnets and Feedback
 - Alternating Current Levitation

Levitation & Stability

- Unstable Levitation Schemes
 - Static permanent magnets
- Stable Levitation Schemes
 - Permanent magnets and contact
 - Dynamic stabilization with permanent magnets
 - Electromagnets and Feedback
 - Alternating Current Levitation
 - Electrodynamic Levitation

Flashlights

Question:

If you remove the 2 batteries from a working flashlight and reinstall them backward so that they make good contact inside, will the flashlight still work?

Observations About Flashlights

- They turn on and off with a switch
- More batteries usually means brighter
- The orientation of multiple batteries matters
- Flashlights dim as batteries age
- Sometimes smacking a flashlight brightens it

A Battery

- Battery "pumps" charge from end to + end
 - Chemical potential energy is consumed
 - Electrostatic potential energy is produced
- Current undergoes a rise in voltage
 - Alkaline cell: 1.5 volt rise
 - Lead-acid cell: 2.0 volt rise
 - Lithium cell: 3.0 volt rise
- Chain of cells produces larger voltage rise