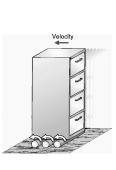
University of Virginia

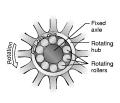
Department of Physics


Physics 606: How Things Work II

Lecture #8 Slides:

Bumper Cars

Rollers


- Eliminate sliding friction at roadway
- Are inconvenient because they keep popping out from under the object

Wheels Eliminate sliding friction at roadway Are convenient because they don't pop out Wheel hubs still have sliding friction

Bearings

- Eliminate sliding friction in wheel hub
- Behave like automatically recycling rollers

Bumper Cars

Question:

You are riding on the edge of a spinning playground merry-go-round. If you pull yourself to the center of the merry-goround, what will happen to its rotation?

- 1. It will spin faster.
- 2. It will spin slower.
- 3. It will spin at the same rate.

Observations About Bumper Cars

- Moving or spinning cars tend to keep doing so
- It takes time to change a car's motion
- Impacts change velocities & ang. velocities
- Cars often seem to exchange their motions
- Heavily loaded cars are hardest to redirect
- Heavily loaded cars pack the most wallop

Momentum

- A translating bumper car carries momentum
- Momentum
 - A conserved quantity (can't create or destroy)
 - A directed (vector) quantity
 - Measures difficulty reaching velocity

 $Momentum = Mass \cdot Velocity$

Exchanging Momentum

- Impulse
 - The only way to transfer momentum
 - Impulse = Force \cdot Time
 - Impulse is a directed (vector) quantity
- Because of Newton's third law: An impulse of one object on a second is accompanied by an equal but oppositely directed impulse of the second on the first.

Head-On Collisions

- Cars exchange momentum via impulse
- Total momentum remains unchanged
- The least-massive car experiences largest change in velocity

Angular Momentum

- A spinning car carries angular momentum
- Angular momentum
 - A conserved quantity (can't create or destroy)
 - A directed (vector) quantity
 - Measures difficulty reaching angular velocity

Angular momentum = Moment of inertia \cdot Angular velocity

Newton's Third Law of Rotational Motion

For every torque that one object exerts on a second object, there is an equal but oppositely directed torque that the second object exerts on the first object.

Exchanging Angular Momentum

- Angular Impulse
 - The only way to transfer angular momentum
 - $Angular \ impulse = Torque \cdot Time$
 - Angular impulse is a directed (vector) quantity
- Because of Newton's third law of rotation: An angular impulse of one object on a second is accompanied by an equal but oppositely directed angular impulse of the second on the first.

Glancing Collisions

•Cars exchange angular momentum via angular impulse

•Total angular momentum about a chosen point in space remains unchanged

•The car with smallest moment of inertia about that chosen point experiences largest change in angular velocity

Changing Moment of Inertia

- Mass can't change, so the only way an object's velocity can change is if its momentum changes
- Moment of inertia can change, so an object that changes shape can change its angular velocity without changing its angular momentum

Question:

You are riding on the edge of a spinning playground merry-go-round. If you pull yourself to the center of the merry-goround, what will happen to its rotation?

- 1. It will spin faster.
- 2. It will spin slower.
- 3. It will spin at the same rate.