PHYS 725 Final Examination

11 December 2001

Solutions

1. The equation of an ellipsoidal surface in 3 dimensions is

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 .
$$

Calculate the volume enclosed by this surface. (Show your work!)

Solution:

Method I:

$$
V=\int_{-c}^{c} d z \int_{-b}^{b} d y \int_{-a}^{a} d x \theta\left(1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}\right)
$$

hence x runs from

$$
-a \sqrt{1-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}} \text { to } a \sqrt{1-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}}
$$

Doing the x-integral we then have

$$
V=2 a \int_{-c}^{c} d z \int_{-b}^{b} d y \sqrt{1-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}} .
$$

But y now runs from

$$
-b \sqrt{1-\frac{z^{2}}{c^{2}}} \text { to } b \sqrt{1-\frac{z^{2}}{c^{2}}}
$$

so we have

$$
\begin{aligned}
V & =2 a \int_{-c}^{c} d z\left(1-\frac{z^{2}}{c^{2}}\right) \int_{-b}^{b} d y \sqrt{1-\frac{y^{2}}{b^{2}}} \\
& =8 a b c \int_{0}^{1} d \zeta\left(1-\zeta^{2}\right) \int_{0}^{1} d \eta \sqrt{1-\eta^{2}}=\frac{4 \pi}{3} a b c
\end{aligned}
$$

Method II:

$$
\begin{aligned}
& x=a \rho \sin \theta \cos \varphi \\
& y=b \rho \sin \theta \sin \varphi \\
& z=c \rho \cos \theta
\end{aligned}
$$

these manifestly lie on the surface when $\rho=1$. The Jacobian of the transformation is easily see to be

$$
d x d y d z=a b c \rho^{2} d \rho \sin \theta d \theta d \varphi
$$

so the volume becomes

$$
V=a b c \int_{0}^{1} \rho^{2} d \rho \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} \sin \theta d \theta=\frac{4 \pi}{3} a b c .
$$

2. Laguerre polynomials $L_{n}(x)$ are defined on the interval $0 \leq x<+\infty$, and satisfy the orthogonality relation

$$
\int_{0}^{\infty} d x L_{m}(x) L_{n}(x) e^{-x}= \begin{cases}0, & m \neq n \\ 1, & m=n\end{cases}
$$

Apply the Gram-Schmidt orthogonalization method to the monomials $x^{0}, x^{1}, x^{2}, \ldots$ in order to derive the Laguerre polynomials $L_{1}(x), L_{2}(x)$, with $L_{0}(x)=1$.

Solution:

$$
L_{0}(x)=1
$$

This is already normalized, since

$$
\int_{0}^{\infty} 1 \cdot e^{-x} d x=1
$$

so

$$
L_{1}(x)=a\left(x-L_{0}(x) \cdot \int_{0}^{\infty} x^{\prime} \cdot L_{0}\left(x^{\prime}\right) \cdot e^{-x^{\prime}} d x^{\prime}\right)=a(x-1) .
$$

We evaluate the unknown normalization constant from the integral

$$
\int_{0}^{\infty}\left(L_{1}(x)\right)^{2} e^{-x} d x=a^{2} \int_{0}^{\infty}(x-1)^{2} e^{-x} d x=a^{2}(2!-2+1)=1
$$

or $a= \pm 1$. To get L_{2} we note that

$$
\begin{aligned}
& L_{2}(x)=a\left[x^{2}-(x-1) \int_{0}^{\infty}\left(x^{\prime}-1\right) x^{\prime 2} e^{-x^{\prime}} d x^{\prime}-1 \cdot \int_{0}^{\infty} x^{\prime 2} e^{-x^{\prime}} d x^{\prime}\right] \\
& =a\left[x^{2}-4(x-1)-2\right]=a\left(x^{2}-4 x+2\right)
\end{aligned}
$$

Normalizing,

$$
\begin{aligned}
\int_{0}^{\infty}\left(L_{2}(x)\right)^{2} e^{-x} d x & =a^{2} \int_{0}^{\infty}\left(x^{2}-4 x+2\right)^{2} e^{-x} d x \\
& \equiv a^{2} \int_{0}^{\infty}\left(x^{2}-4 x+2\right) x^{2} e^{-x} d x \quad \text { (Why?) } \\
& =a^{2}(4!-4 \cdot 3!+2 \cdot 2!)=4 a^{2}=1
\end{aligned}
$$

or $a= \pm 1 / 2$.
3. Evaluate the sum

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}-0.25}
$$

in closed form, using any method that seems promising.

Solution:

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n^{2}-0.25}=\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left(\frac{1}{n-0.5}-\frac{1}{n+0.5}\right) \\
& =\lim _{N \rightarrow \infty}\left(\frac{1}{1-0.5}-\frac{1}{N+0.5}\right)=2
\end{aligned}
$$

Alternatively, we can use contour integration or the formula

$$
-\pi \cot (\pi \lambda)=-\frac{1}{\lambda}+2 \lambda \sum_{n=1}^{\infty} \frac{1}{n^{2}-\lambda^{2}}
$$

Let $\lambda=0.5$; then since $\cot (\pi / 2)=0$ we have

$$
0=-2+\sum_{n=1}^{\infty} \frac{1}{n^{2}-0.25}
$$

QED.
4. The Ruritanian zither is a single-stringed instrument, whose string has a radius that varies with linear position as

$$
R(x)=R_{0} \sqrt{1+\frac{1}{4} \sin (\pi x / L)}
$$

where L is the length of the string.
(a) (10 points) Derive the (partial differential) equation of motion of the string. Assume the string is made of material with uniform volumetric mass-density ρ.

Solution:

As discussed in class, and as is done on p. 352-354 of the notes, we break the string into lumps of mass $\Delta m=\mu(x) \Delta x=\rho \pi R^{2} \Delta x$ and apply Newton's second law to the displacement of the n^{\prime} 'th mass:

$$
\Delta m \frac{d^{2} \psi_{n}}{d t^{2}}=-T \frac{\psi_{n}-\psi_{n-1}}{\Delta x}-T \frac{\psi_{n}-\psi_{n+1}}{\Delta x}
$$

Going to the continuum limit, $\Delta x \rightarrow 0$, we find

$$
\frac{\mu(x)}{T} \frac{\partial^{2} \psi}{\partial t^{2}}=\frac{\partial^{2} \psi}{\partial x^{2}}
$$

where $\mu(x)=\rho \pi R^{2}(x)$.
(b) (10 points) If the string is clamped at both ends, estimate the frequency of the lowest vibrational mode of the string, in terms of the tension T, length L, radius R_{0} and density ρ.

Solution:

Applying separation of variables (and skipping a step!) we have

$$
\psi(x, t)=\phi(x) e^{i \omega t}
$$

where

$$
\omega^{2} \frac{\mu(x)}{T} \phi(x)=-\frac{d^{2} \phi}{d x^{2}} .
$$

Therefore we may multiply both sides by $\phi(x)$ and integrate from 0 to L and obtain

$$
\omega^{2}=\frac{\int_{0}^{L} d x\left[\frac{d \phi}{d x}\right]^{2}}{\int_{0}^{L} d x[\phi(x)]^{\frac{\mu(x)}{T}}}=F(\{\phi\}) .
$$

However, as discussed in class, the lowest frequency is bounded above by $F(\{\chi\})$ where χ is any function that vanishes at both endpoints. So let us take $\chi(x)=\sin (\pi x / L)$ and evaluate. We get

$$
\begin{aligned}
\omega_{0}^{2} & \leq F(\{\chi\})=\frac{\pi^{2}}{L^{2}}\left(\frac{T}{\rho \pi R_{0}^{2}}\right) \frac{\int_{0}^{\pi} d \theta \cos ^{2} \theta}{\int_{0}^{\pi} d \theta\left[1+\frac{1}{4} \sin \theta\right] \sin ^{2} \theta} \\
& =\frac{\pi^{2}}{L^{2}}\left(\frac{T}{\rho \pi R_{0}^{2}}\right) \frac{1}{1+\frac{2}{3 \pi}}
\end{aligned}
$$

5. The rate of heat flow in an isotropic solid can be defined in terms of a flux vector (thermal energy per unit area per unit time across a surface normal to the vector)

$$
\vec{\jmath}_{Q}=-\kappa \nabla T,
$$

where κ is the thermal conductivity. (This relation was deduced by Isaac Newton!)

The heat energy is conserved (First Law of Thermodynamics)

$$
\frac{\partial U_{Q}}{\partial t}+\nabla \cdot \vec{\jmath}_{Q}=0
$$

and we may assume the heat energy density is linear in the temperature,

$$
U_{Q}=c_{V} T
$$

where the constant of proportionality c_{V} is the specific heat (per unit volume).
(a) (15 points) Use this information to derive an equation for the temperature distribution in the body, as a function of position and time.

Solution:

$$
\nabla \cdot \vec{\jmath}_{Q}=-\kappa \nabla^{2} T
$$

and thus

$$
\frac{\partial U_{Q}}{\partial t}=\kappa \nabla^{2} T
$$

or

$$
\frac{\partial T}{\partial t}=\frac{\kappa}{c_{V}} \nabla^{2} T
$$

giving

$$
D=\kappa / c_{V} .
$$

(b) (5 points) A long thin rod, of cross-section A and length L is initially at $T=300^{\circ} \mathrm{K}$ and one end is placed in a furnace at $T=500^{\circ} \mathrm{K}$. Two (2) seconds later, the other end of the rod has reached a temperature of $T=450^{\circ} \mathrm{K}$. What would the time be for a similar rod of length $2 L$?

Solution:

As we discussed at great length in class, and in p. 355 ff of the online lecture notes, in diffusive processes distance scales as $t^{0.5}$. Or we could see this from dimensional analysis of the diffusion equation itself:

$$
\begin{aligned}
& {\left[\frac{\partial T}{\partial t}\right]=\frac{[T]}{\text { time }}} \\
& {\left[D \nabla^{2} T\right]=[D] \frac{[T]}{\text { length }^{2}}}
\end{aligned}
$$

or

$$
t \propto D^{-1} \ell^{2}
$$

Thus the time for a bar twice as long to reach the same temperature must be $4 \times$ the previous time, or in this case, 8 seconds.

(Possibly) Useful Formulae

$$
\int_{-\infty}^{\infty} d x e^{i k x} e^{-x^{2}}=\sqrt{\pi} e^{-k^{2} / 4}
$$

(Note: you can get $\int_{-\infty}^{\infty} d x x^{2 n} e^{-x^{2}}$ by comparing the series expansions of $e^{-k^{2} / 4}$ and $e^{i k x}$ on both sides.

If $f(z)$ is analytic within Γ, then $\oint_{\Gamma} d z f(z)=0$.
If $z^{n}=1$ then $z=e^{2 k \pi i / n}, k=0,1, \ldots, n-1$.
$e^{z}=1+\frac{z}{1!}+\frac{z^{2}}{2!}+\ldots$
$\cos z=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-+\ldots$
$\sin z=\frac{z}{1!}-\frac{z^{3}}{3!}+-\ldots$
$d e^{z}=e^{z} d z \quad d \cos z=-\sin z d z$
$d \sin z=\cos z d z \quad d \tan z=\sec ^{2} z d z$
$d \sinh z=\cosh z d z \quad d \cosh z=\sinh z d z$
$d \log z=\frac{d z}{z} \quad d \tan ^{-1} z=\frac{d z}{z^{2}+1}$
$\Gamma(z)=\int_{0}^{\infty} d t t^{z-1} e^{-t}, \quad \Gamma(z+1)=z \Gamma(z)$
$B(v, w)=\int_{0}^{1} d t t^{v-1}(1-t)^{w-1} \equiv \frac{\Gamma(v) \Gamma(w)}{\Gamma(v+w)}$
Bessel's equation: $x^{2} \psi^{\prime \prime}+x \psi^{\prime}+\left(x^{2}-m^{2}\right) \psi=0$
if $\psi(x)=x^{\alpha} J_{ \pm m}\left(\beta x^{\gamma}\right)$,
then $x^{2} \psi^{\prime \prime}+x(1-2 \alpha) \psi^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}+\alpha^{2}-m^{2} \gamma^{2}\right) \psi=0$

