
PHYS 725 Final Examination

11 December 2001

Solutions

1. The equation of an ellipsoidal surface in 3 dimensions is

x2

a2
+
y2

b2
+
z2

c2
= 1 :

Calculate the volume enclosed by this surface. (Show your work!)
Solution:

Method I:

V =
Z c

�c
dz

Z b

�b
dy

Z a

�a
dx �

 
1� x2

a2
� y2

b2
� z2

c2

!

hence x runs from

�a
s
1� y2

b2
� z2

c2
to a

s
1� y2

b2
� z2

c2
:

Doing the x�integral we then have

V = 2a
Z c

�c
dz

Z b

�b
dy

s
1� y2

b2
� z2

c2
:

But y now runs from

�b
s
1� z2

c2
to b

s
1� z2

c2

so we have

V = 2a
Z c

�c
dz

 
1� z2

c2

!Z b

�b
dy

s
1� y2

b2

= 8abc
Z 1

0
d�
�
1� �2

� Z 1

0
d�
q
1� �2 =

4�

3
abc :
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Method II:

x = a� sin � cos'
y = b� sin � sin'
z = c� cos � ;

these manifestly lie on the surface when � = 1. The Jacobian of the
transformation is easily see to be

dx dy dz = abc�2d� sin � d� d'

so the volume becomes

V = abc

Z 1

0
�2d�

Z 2�

0
d'

Z �

0
sin � d� =

4�

3
abc :

2. Laguerre polynomials Ln(x) are de�ned on the interval 0 � x < +1,
and satisfy the orthogonality relation

Z
1

0
dxLm (x)Ln (x)e

�x =
�
0; m 6= n

1; m = n

Apply the Gram-Schmidt orthogonalization method to the monomials
x0; x1; x2; : : : in order to derive the Laguerre polynomials L1(x), L2(x),
with L0(x) = 1.
Solution:

L0(x) = 1

This is already normalized, since

Z
1

0
1 � e�xdx = 1

so

L1 (x) = a

�
x� L0(x) �

Z
1

0
x0 � L0(x

0) � e�x0

dx0
�
= a (x� 1) :
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We evaluate the unknown normalization constant from the integral

Z
1

0
(L1(x))

2
e�xdx = a2

Z
1

0
(x� 1)2 e�xdx = a2 (2!� 2 + 1) = 1

or a = �1. To get L2 we note that

L2 (x) = a
h
x2 � (x� 1)

R
1

0 (x0 � 1) x02 e�x
0

dx0 � 1 � R10 x02 e�x
0

dx0
i

= a [x2 � 4 (x� 1)� 2] = a (x2 � 4x+ 2)

Normalizing,

Z
1

0
(L2(x))

2
e�xdx = a2

Z
1

0

�
x2 � 4x + 2

�2
e�xdx

� a2
Z
1

0

�
x2 � 4x + 2

�
x2 e�xdx (Why?)

= a2 (4!� 4 � 3! + 2 � 2!) = 4a2 = 1

or a = �1/2.

3. Evaluate the sum

1X
n=1

1

n2 � 0:25

in closed form, using any method that seems promising.
Solution:

1P
n=1

1
n2�0:25

= lim
N!1

NP
n=1

�
1

n�0:5
� 1

n+0:5

�
= lim

N!1

�
1

1�0:5
� 1

N+0:5

�
= 2

Alternatively, we can use contour integration or the formula

�� cot (��) = �1

�
+ 2�

1X
n=1

1

n2 � �2
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Let � = 0:5; then since cot (�/2) = 0 we have

0 = �2 +
1X
n=1

1

n2 � 0:25

QED.

4. The Ruritanian zither is a single-stringed instrument, whose string has
a radius that varies with linear position as

R(x) = R0

q
1 + 1

4
sin (�x/L) ;

where L is the length of the string.

(a) (10 points) Derive the (partial di�erential) equation of motion of
the string. Assume the string is made of material with uniform
volumetric mass-density �.
Solution:
As discussed in class, and as is done on p. 352-354 of the notes, we
break the string into lumps of mass �m = � (x)�x = ��R2�x
and apply Newton's second law to the displacement of the n'th
mass:

�m
d2 n

dt2
= �T  n �  n�1

�x
� T

 n �  n+1

�x
:

Going to the continuum limit, �x! 0, we �nd

� (x)

T

@2 

@t2
=
@2 

@x2
;

where � (x) = ��R2 (x).

(b) (10 points) If the string is clamped at both ends, estimate the
frequency of the lowest vibrational mode of the string, in terms of
the tension T , length L, radius R0 and density �.
Solution:
Applying separation of variables (and skipping a step!) we have

 (x; t) = � (x) ei!t
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where

!2� (x)

T
� (x) = �d

2�

dx2
:

Therefore we may multiply both sides by �(x) and integrate from
0 to L and obtain

!2 =

R L
0 dx

h
d�

dx

i2
R L
0 dx [� (x)]

2 �(x)
T

= F (f�g) :

However, as discussed in class, the lowest frequency is bounded
above by F (f�g) where � is any function that vanishes at both
endpoints. So let us take � (x) = sin (�x/L) and evaluate. We get

!2
0 � F (f�g) = �2

L2

 
T

��R2
0

! R �
0 d� cos

2 �R �
0 d�

h
1 + 1

4
sin �

i
sin2 �

=
�2

L2

 
T

��R2
0

!
1

1 + 2
3�

5. The rate of heat 
ow in an isotropic solid can be de�ned in terms of a

ux vector (thermal energy per unit area per unit time across a surface
normal to the vector)

~|Q = ��rT ;
where � is the thermal conductivity. (This relation was deduced by
Isaac Newton!)

The heat energy is conserved (First Law of Thermodynamics)

@UQ

@t
+r � ~|Q = 0

and we may assume the heat energy density is linear in the temperature,

UQ = cV T ;

where the constant of proportionality cV is the speci�c heat (per unit
volume).
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(a) (15 points) Use this information to derive an equation for the
temperature distribution in the body, as a function of position
and time.
Solution:

r � ~|Q = ��r2T

and thus

@UQ

@t
= �r2T

or

@T

@t
=

�

cV
r2T

giving

D = �/cV :

(b) (5 points) A long thin rod, of cross-section A and length L is
initially at T = 300 ÆK and one end is placed in a furnace at
T = 500 ÆK. Two (2) seconds later, the other end of the rod has
reached a temperature of T = 450 ÆK. What would the time be
for a similar rod of length 2L?
Solution:
As we discussed at great length in class, and in p. 355� of the
online lecture notes, in di�usive processes distance scales as t0:5.
Or we could see this from dimensional analysis of the di�usion
equation itself:"

@T

@t

#
=

[T ]

time

h
Dr2T

i
= [D]

[T ]

length2

or

t / D�1`2 :

Thus the time for a bar twice as long to reach the same tempera-
ture must be 4� the previous time, or in this case, 8 seconds.
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(Possibly) Useful Formulae

Z
1

�1

dxeikxe�x
2

=
p
� e�k

2/4

(Note: you can get
R
1

�1
dx x

2n
e
�x

2

by comparing the series expansions of

e�k
2/4 and eikx on both sides.

If f(z) is analytic within�; then
I
�

dzf (z) = 0 :

If zn = 1 then z = e2k�i/n; k = 0; 1; : : : ; n� 1 :

ez = 1 + z
1!
+ z2

2!
+ : : :

cos z = 1� z2

2!
+ z4

4!
�+ : : :

sin z = z
1!
� z3

3!
+� : : :

dez = ezdz d cos z = � sin z dz
d sin z = cos z dz d tan z = sec2 z dz
d sinh z = cosh z dz d cosh z = sinh z dz

d log z = dz
z

d tan�1 z = dz
z2+1

� (z) =
Z
1

0
dt tz�1e�t; � (z + 1) = z� (z)

B (v; w) =
Z 1

0
dt tv�1 (1� t)w�1 � � (v) � (w)

� (v + w)

Bessel's equation: x2 00 + x 0 +
�
x2 �m2

�
 = 0

if (x) = x�J�m (�x
) ;

then x2 00 + x (1� 2�) 0 +
�
�2
2x2
 + �2 �m2
2

�
 = 0
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