PHYS 725 Final Examination
11 December 2001

Solutions

1. The equation of an ellipsoidal surface in 3 dimensions is

1,2 2 22
S+ mt5 =1

Calculate the volume enclosed by this surface. (Show your work!)
Solution:

Method I:

fL‘Q y2 22
V= 7Cdz/ dy d:w( —?—b—2—§>

hence z runs from

[ Y2 22 [ Y2 22
—a 1_ﬁ_§ to a 1_ﬁ_§'

Doing the x—integral we then have

c b 2 2
/ Y z
V:2alcdz[bdy l—b—2—§.

But y now runs from

/ 22 / 22

so we have

c 22 b y2
Vo= Qa/cdz<1——2>/ ay\[1- %

= 8abc/ d( 1— /dm/l— —abc.



Method II:

x = apsin f cos ¢
y = bpsinfsin ¢
z=cpcost;

these manifestly lie on the surface when p = 1. The Jacobian of the
transformation is easily see to be

dz dy dz = abep*dp sin 6 df deo

so the volume becomes

1 2w ™ 47
V= abc/ pidp / dy / sinf dff = —abc.
0 0 0 3

. Laguerre polynomials L, (z) are defined on the interval 0 < z < o0,
and satisfy the orthogonality relation

0, m#n
1, m=n

/000 dx Ly, (z) L, (z)e * = {

Apply the Gram-Schmidt orthogonalization method to the monomials

2% 2" 2%, ... in order to derive the Laguerre polynomials L;(z), Lo(z),
with Ly(x) = 1.
Solution:

LU (l‘) =1

This is already normalized, since

/ l-e%dz=1
0

SO

Li(z)=a (x — Lo(x) - /Ooox' : Lo(x')-e_’”,dx'> =a(r—1).
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We evaluate the unknown normalization constant from the integral

/ (Ly(z))? e %dz = aZ/ (z—1)> e %dz=a>(2'—24+1)=1
0 0
or a = +1. To get L, we note that

Ly(x)=a [:172 —(r—1) [ (2" — 1) a?e " dr’ —1- [° 2" e*I,dx’]
=alr? —4(x—1)—2]=a(2? — 42 +2)

Normalizing,
/ (LZ(I))2 e fdr = a2/ (:172 — 4z + 2)2 e “dx
0 0

a2/ (m2—4x+2) v?e "dr  (Why?)
0
= a4 —4-31+2-2)=4a* =1

or a ==+1/2.

. Evaluate the sum

o0

Z —0.25

in closed form, using any method that seems promising.
Solution:

ij o = lim E ( n+10.5)

1 N—00p,
=2

S

= lim ( L i )
M \150s T N+o05

Alternatively, we can use contour integration or the formula

—mcot (mA) =



Let A = 0.5; then since cot (7/2) = 0 we have

e 1
0=—-2 B
+n;1n2—0.25

QED.

. The Ruritanian zither is a single-stringed instrument, whose string has
a radius that varies with linear position as

R(x) = Ro\/l + ¢sin (rz /L),

where L is the length of the string.

(a) (10 points) Derive the (partial differential) equation of motion of
the string. Assume the string is made of material with uniform
volumetric mass-density p.

Solution:

As discussed in class, and as is done on p. 352-354 of the notes, we
break the string into lumps of mass Am = pu(r) Ar = prR*Ax
and apply Newton’s second law to the displacement of the n’th
mass:

d2’¢}n @Z}n - 'QZ}n—l ¢n - 77bn-|-1
e T - Az -1 Az
Going to the continuum limit, Az — 0, we find
p(z) 0% 0%
T 0tz 0z’
where p (z) = pr R? ().

A

(b) (10 points) If the string is clamped at both ends, estimate the
frequency of the lowest vibrational mode of the string, in terms of
the tension 7', length L, radius Ry and density p.
Solution:
Applying separation of variables (and skipping a step!) we have

(0 (xa t) =¢ (x) et



where
2 11 () &
W) = =g
Therefore we may multiply both sides by ¢(z) and integrate from
0 to L and obtain

2
foL dx [@]
2 dx
R
However, as discussed in class, the lowest frequency is bounded
above by F' ({x}) where x is any function that vanishes at both
endpoints. So let us take x (z) = sin (7z/L) and evaluate. We get

PP Y T
o = X L2 \ prR3 fodb [1+isin9] sin? 4

B w2 T 1
- L2 \prRZ) 1+ %

5. The rate of heat flow in an isotropic solid can be defined in terms of a
flux vector (thermal energy per unit area per unit time across a surface
normal to the vector)

fQ = —rVT 5

where r is the thermal conductivity. (This relation was deduced by
I[saac Newton!)

The heat energy is conserved (First Law of Thermodynamics)

oo
e Ay :O
8t —|—V jQ

and we may assume the heat energy density is linear in the temperature,
UQ = CvT,

where the constant of proportionality ¢y is the specific heat (per unit
volume).



()

(15 points) Use this information to derive an equation for the
temperature distribution in the body, as a function of position
and time.
Solution:

\Y% 'fQ = —HVZT

and thus
g _ kV*T
ot
or
T
o _ Koy
ot Cy
giving
D = /ﬁ}/CV .

(5 points) A long thin rod, of cross-section A and length L is
initially at 7" = 300°K and one end is placed in a furnace at
T = 500°K. Two (2) seconds later, the other end of the rod has
reached a temperature of 7' = 450°K. What would the time be
for a similar rod of length 2L7?

Solution:

As we discussed at great length in class, and in p. 355ff of the
online lecture notes, in diffusive processes distance scales as %5,
Or we could see this from dimensional analysis of the diffusion
equation itself:

o =

ot | time
2] _ [T]
[DV T] =[D] length?
or
toc D102,

Thus the time for a bar twice as long to reach the same tempera-
ture must be 4x the previous time, or in this case, 8 seconds.



(Possibly) Useful Formulae

/oo dl,eikxe—xz — \/7_1'67]62/4
—00

2
(Note: you can get [2° dz £2"e~" by comparing the series expansions of

e /% and ¢ on both sides.

If f(2) is analytic within T, then 7{ dzf (z) = 0.
r

Ifz" = 1thenz = 2™/ k=0,1,...,n—1.

6221+%+§+___
22 24
cosz:l—g—i—ﬂ——i—...

. 3
smz:ﬁ—g—!qL—...

de® = e*dz dcosz = —sinzdz
dsinz = coszdz dtan z = sec? 2 dz
dsinh z = cosh zdz dcoshz = sinh z dz

__dz -1, _ _dz
dlogz = & dtan " z = 735

r(2) :/0°° dt e, T(241) =21 (2)

— ! v—1  opw—1l r (U) r (’U))
Bvw)= [ die (1-1)" " = Twro)
Bessel’s equation: 2" 4+ a0’ + (:U2 - m2) =0
if 1) () = 2%Jem (B27),

then 2%¢" + 2 (1 — 2a) ¢ + (627%27 +ao?— m272) =0




