PHYS 725 Solutions to HW # 2 p. 1

Riley, et. al p. 667

18.1 We are asked to find an analytic function of z =x + 7y whose imaginary part is
v(xyy) = @ cosy + x sinyHex.

We use the Cauchy-Riemann equation

0 0 .
a—z = % = Bosy - ysiny + xcosyHex
to get

u = Eosy -y sinyHex + cosy %ex—ex%+ g() -
From the other Cauchy-Riemann equation,
o _ o0
o  ox
we find g'(y) = 0,7.e. g = constant. Thus, putting together # and v we get
f2) =u +iv =2zé.

18.2 The answer given in the book on p. 671 is correct but useless, since it is not a function of
z=x +1y . The answer can be obtained by the same method as above. It satisfies the
Cauchy-Riemann equations, so it is an analytic function and therefore expressible as a func-
tion of z =x + 7y . How can we find this function? Calculate the derivative of

_sin2x — isinh 2y
f (x,y ) -
cosh 2y = cos 2x

by looking at the leading terms of
af : df
f(x+5xa y+6y) = f(x,y) + Z (6)5 + 16.)/) = f(x’y) + Z b

to find
—1 + cos 2x cosh 2y + isin 2x sinh 2y

(cosh 2y — cos 2x)? ’

2
—— ., or
cost—l’O

df _
- =2

evaluate aty = 0: fi(x) =

4
2
= dv—F——+ .
f(z) I W =1+ constant
. . i L
Performing the integral we obtain f(z) = i _ + ¢, which is easily seen to equal the

book answer, if we set ¢ =i. The singularities (poles) occur when z = 2nT.
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18.3 The radii of convergence can be found by the ratio test:

R = lim
7 — 00 ﬂn+1
g, 1
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+1)"! n!
)% % = exp Hn+1)log (n+1) — nlogn - log (n+l)H
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2
18.41fr > L2 7] we can use Jordan’s Lemma to say [;;m %LDD elzl hence the terms of
n o om_ 7

the series are then decreasing and alternating in sign and therefore converge by Weierstrass’

criterion. This is true for any p and z.

We now calculate the derivatives at the origin:

d C
SO =py 7 =plog2
1

It is easy to see that the derivatives are the corresponding powers of p with coefficients
that are either O (even derivatives) or that approach 1. Thus the Taylor series for f{z) has

the form
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2n+1

fio) = z ey 027

since the coefficients c,,,, are smaller than 1 and positive the series has an infinite radius of

convergence.

18.5 Zeros, poles, branch cuts and essential singularities of

. . . g 10
a) tan z : zeros at sin z = 0, i.e. z = #TT. Simple poles at cos z =0, z=[7 + 2DT[
g O

-2 . 1 1 R
z sin DFE: zerosatz=2, z=1 — —,z =00 ; double pole at z = 0, essential sin-
- Zl:l nTt

b)
gularity atz = 1.
c) e'%: essential singularity at z=0.

d) tan %E zeros and poles at inverses of part a) — essential singularity at z=0.

e) z%3 : branch point at z = 0 ; branch line extending to z = w along any smooth curve.

18.16 The equation of the ellipse is

/
— =1-¢gcosb
,

hence the area is given by
m

de
840 =0
Jd © I(l—SCose)

The easiest way to get the answer is to factor out € and consider the integral

om
: doe
la) = {a —cosO
since
A= e? %E
a Dl _ l
€
Clearly,
d
I(a) = —2i s
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This we evaluate using the calculus of residues to get
-1
=210
I(a) = 2m % 1

or
S
=20 -¢0
A ZN%eD

18.17 We have already done something like this in class. We want to show that
df o sin(0z) dt —a

I(a):I—zne

o £+1
(In fact this is a factor 2 too large!) We use the fact that zsin(az) is odd to write

® t sin(ar) dt © e gy
@ = 3f PSS
2 —00 t +1 2 —o0 [ +l

and then integrate around the contour
shown to the right. The only included
pole is at +z, and the integral on the A ]m(z)

large semicircle vanishes as R™' by Jor-
dan’s Lemma, so we get [ R
0. q:0 T /
() = Imaue  —O=5e .
0 21 0 2
Note this differs by a factor 2 from the

answer given in the book. (Riley, 1st = RQ(Z)
ed.)




