PHYS 725 HW #4. Due 15 November 2001

1. Riley 12.3:
dg ¢
R~ + = =V(t);
ot =V

The solution is obtained with the integrating factor exp (t/RC), giving
q(t) = e YR ( / dsV (s) e/ RO + (0)> :

With ¢(0) = 0 and V' (t) = Vj sin(wt) we thus have
q(t) = et/RC%Im [/Ot ds ei“ses/RC]

_ 1 e —yRe ]
= Clolm L‘wRC +1 (e ¢ )

—t/RC
) sin (wt - tan_l(wRC’)) + wRCe T
1+ (wRC)? 1+ (wRC)?
We can see this is right by comparing the behavior at small t—we
should get
t2
t) ~ wV
1(t) ~ Voo
2. Riley 12.4:

The equation

dy
— )2 +22+3y=0
(y—2) o +20+3y

is homogeneous of degree 1, so substituting y(z) = z v(z) we find

d'U 2
—1)—+1 1)°=0
(v )dx+ +(v+1)

or with v =u—1,

—2)d 1
/%:§ln(l+u2)—2tanlu:—/dx:—x+A.



3. Riley 12.9:
The equation

d
sinx—y +2ycosx =1
dx

can be reduced to a quadrature by the standard integrating factor,

T cost
f(z) = exp [2/ dt—— | = exp (2In(sinz)) = sin®z;
sint
applying this we have
dy d
in2 . _ ) .
sin“x — + 2ycosxsiny = — (ysin“x) =sinx
dx + ey dx (y )
or
.9
. 9 sin® x
ysin“c = —cosr +1 = ———,
1+cosx
B 1
Y= 1 cosz

where we have applied the boundary condition y (7/2) = 1 to determine
the constant in the solution.

4. Riley 13.6:
Use the method of variation of parameters to find the general solutions
of

2
(a) GE—y==

Solution: The independent solutions of the homogeneous equa-
tion are e® and e~ so we let

y(x) =a(x)e"+ [ (x)e ™,
with the subsidiary condition

e’o +e "B =0.



Then differentiating twice and applying the subsidiary condition,
we have

% = e’ + fe "+ —e T f,
or
ol —e "B =a".
Thus
y(r) = Ae® + Be " + /OI dtt" sinh (x — t).

(b) %—2%4—?;:21’61

Solution: The independent solutions of the homogeneous equa-
tion are e® and xe® so let

y(z) =a(x)e” + [ (v)ze”
and find 8 = 2%, o = —223/3.

5. Riley 13.7:
The Green’s function is
Yy2(2)y1(t) Y1 () y2(t)
t)= 22220 —t T 2T L 0(t —
Gl t) = P —1) + 0 )

where 35(0) # 0, yo(m) = 0, 41(0) = 0, y(m) # 0. Since the solutions
of the homogeneous equation that satisfy these criteria are y; (x) =
sin (z/2), yo (x) = cos (x/2), and since the Wronskian is

we have
G(z,t) = —2cos(x/2)sin (t/2) O(x — t) — 2cos (t/2) sin (z/2) O(t — x) .
6. Riley 14.4 Part (a):

2 =2y + 2y =0



so let
o0
y(z) — Z anzn—l—a;
n=0

the indicial equation is
ala—1)—2a=0,

or =0, 3.

We get a 2-term recursion relation
(a+n+2)(a+n—1)a,2+a,=0.

With a = 0 and a; = 0, the terms are

z0+lz2— z4+ ! 28— ! z
2 4-2 6-3-4-2 8-5:-6-3-4-2

which we rewrite as

(_1)0 1, 3 4 8
—Tz + EZ_EZ +az—§z +...

With a = 3 we get, similarly, the terms

1
B 5 7
& 5.5 T9.4.5.7°

_ 3:2 4 3-45 3-6 -
= 3!2’—5!2’4—7!2—4—...

—4+...

— 2”(_1)n+1 o+l _

=32 (2n+1)!

n=1

8 ...



Part (b): If we expand the sinusoidal functions in power series we get

00 Z2n+1 Z2n+1
sinz — zcosz:nz:%(—l) GnrD)l @)
_ i (—1)"! (2n +1—1) 22! _ i (—1)"! 2n 22t
= (2n +1)! = (2n+1)!7

which is y;(2) within the requisite factor 3.

To get the other solution using the Wronskian method we write

Y2 (2) = u(2) 1 (2)

so that

Integrating we find

Y2 (2) = u (2) y1 (2) = Ayy (2) /z [ti Ay, () /z ( 2t

y1 (1)) sint — tcost)
or using the hint to perform the integral by parts,
y2(2) = A(zsinz + cos z) .
Expanding we recover the series

(_1)0 1, 3 4 56 78
—Tz +§Z_IZ +az—§z +...

which we identify with y,, within a multiplicative factor.

Part (¢): Calculating the Wronskian we get

(zsinz + cos z)’ (sinz — zcos z) — (zsin z + cos z) (sinz — 2z cos z)’

= (2c082) (sinz — zcos z) — (zsinz + cos z) (zsinz) = —2% £ 0.
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7. Riley 14.5

The equation is y” — 22y’ — 2y = 0 ; the power series solution about
z=01s

o0
y(z) = Z cn2"”
n=0

leading to the recursion relation ¢, o = 2¢,/(n + 2) ; with ¢g = 1 and
c1 = 0 we get

y(z) = exp (22) :

We can get a second solution using y;(z) = exp (z%) v(z) which gives
v" + 220" =0 or

v(z) = A/z dt exp (—t2) +v(0)
0
which, with A =1 and v(0) = 0 gives
yi(z) = /Z dt exp (22 - t2) :
0

But this must be the power-series solution obtained with ¢ =0, ¢; = 1
which is

= 2\" 1 _ [ 2 2
y1(z):znZ:0(2z) m:/odtexp(z —t),
where (2n + 1)!!ﬁ(2n—|— 1) x (2n—1) x ... x (1).

8. Riley 14.8

The differential equation for the Hermite polynomials is

H) —2zH, +2nH, = 0;



if we define the generating function
oo t’rL
G ()L Hal2)
o n!

then the differential equation may be multiplied by ¢"/n! and summed
to get

0%G oG oG
=7~ 2o 2 =0.

Since we are given the solution,

df & tn 5
G (z,t)= X%Hn(z)ﬁ = exp (2zt —t ) :
n—=
we can differentiate with respect to z to get
tn 25n+1

n=0
Comparing like powers of ¢ we see that

dH,,
dz

= 2’[’LHn_1 .

We can also differentiate G with respect to ¢ to get

00 tn—l

%exp(2zt—t2)— (z —t) ZH Z

or

22Hy(2) = 2nHy,1(2) — Hn4a(2)] = 0.

Comparing coefficients of t” we get the desired result,

Hn+1 - QZHn + QTLHn,l =0.



9. Riley 14.9
Clearly

G (z,t) = exp (2275 - t2) = exp (2275 — -4 z2) = exp (22) exp ((z - t)z)

so that

I

exp (—z2) H,(z) = 5 P (— (z — t)2)
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or

i) = exp () (52 e (7).

10. Non-riley problem:
The driven, damped oscillator is defined by

i+7i+w2x:&:Q(t).
m

Using the operator method (or Laplace transform, or variation of pa-
rameters) we find

x(t):/OtdsK(t—s)Q(s)—i—xo(t)

where

and where (%) is any solution of the homogeneous equation. Similarly,
by direct differentiation or any other method we find

a'c(t):/OtdsA(t—s)Q(s)Jra'co(t)—%x(t),
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where
At —s)=e "9 205 [Q(t—5)] .

We now assume ()(t) is a random function with the ensemble averages
characteristic of Gaussian white noise:

Q) =0

2

(QQ(s)) = 55 (t —s) .

m2

Then we can find the expected values and variances of z(t) and &(t):

o t

(@) = @0))?) = — | ds[K ()

m? Jo

o2 +? o2
% (1= —
t=oo  2m2Q)2~y ( v + 492> 2m2w2y

(@) = @@))°) =
([ [ waeK e+ Y [ o)

2 2 9.2 2
- 2 1+ L+ L )= 7
t—oc0 2m?2ry dw?  4w?  4w? 2m?2y

Thus, for large t, after the system has settled down, the ensemble
average of the (fluctuational) energy of a harmonic oscillator driven
by noise is

(H) =

m
2



Note that this energy is independent of the oscillator frequency, as long
as the oscillator is underdamped.

This result is exactly twice the ensemble-averaged kinetic energy which,
in the limit that the particle is unbound, is expected to be

o? kT
2my 2

I

that is, the equilibrium thermal energy of an oscillator in a thermal
bath at absolute temperature 7" is k7.
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