PHYS 725 HW \#4. Due 15 November 2001

1. Riley 12.3 :

$$
R \frac{d q}{d t}+\frac{q}{C}=V(t)
$$

The solution is obtained with the integrating factor $\exp (t / R C)$, giving

$$
q(t)=e^{-t / R C}\left(\frac{1}{R} \int_{0}^{t} d s V(s) e^{s / R C}+q(0)\right)
$$

With $q(0)=0$ and $V(t)=V_{0} \sin (\omega t)$ we thus have

$$
\begin{aligned}
q(t) & =e^{-t / R C} \frac{V_{0}}{R} \operatorname{Im}\left[\int_{0}^{t} d s e^{i \omega s} e^{s / R C}\right] \\
& =C V_{0} \operatorname{Im}\left[\frac{1}{i \omega R C+1}\left(e^{i \omega t}-e^{-t / R C}\right)\right] \\
& =\frac{C V_{0}}{\sqrt{1+(\omega R C)^{2}}}\left[\sin \left(\omega t-\tan ^{-1}(\omega R C)\right)+\frac{\omega R C e^{-t / R C}}{\sqrt{1+(\omega R C)^{2}}}\right] .
\end{aligned}
$$

We can see this is right by comparing the behavior at small t-we should get

$$
q(t) \approx \omega V_{0} \frac{t^{2}}{2 R}
$$

2. Riley 12.4:

The equation

$$
(y-x) \frac{d y}{d x}+2 x+3 y=0
$$

is homogeneous of degree 1 , so substituting $y(x)=x v(x)$ we find

$$
(v-1) \frac{d v}{d x}+1+(v+1)^{2}=0
$$

or with $v=u-1$,

$$
\int \frac{(u-2) d u}{1+u^{2}}=\frac{1}{2} \ln \left(1+u^{2}\right)-2 \tan ^{-1} u=-\int d x=-x+A .
$$

3. Riley 12.9 :

The equation

$$
\sin x \frac{d y}{d x}+2 y \cos x=1
$$

can be reduced to a quadrature by the standard integrating factor,

$$
f(x)=\exp \left[2 \int^{x} d t \frac{\cos t}{\sin t}\right]=\exp (2 \ln (\sin x))=\sin ^{2} x
$$

applying this we have

$$
\sin ^{2} x \frac{d y}{d x}+2 y \cos x \sin x \equiv \frac{d}{d x}\left(y \sin ^{2} x\right)=\sin x
$$

or

$$
\begin{aligned}
& y \sin ^{2} x=-\cos x+1=\frac{\sin ^{2} x}{1+\cos x} \\
& y=\frac{1}{1+\cos x}
\end{aligned}
$$

where we have applied the boundary condition $y(\pi / 2)=1$ to determine the constant in the solution.
4. Riley 13.6:

Use the method of variation of parameters to find the general solutions of
(a) $\frac{d^{2} y}{d x^{2}}-y=x^{n}$

Solution: The independent solutions of the homogeneous equation are e^{x} and e^{-x} so we let

$$
y(x)=\alpha(x) e^{x}+\beta(x) e^{-x},
$$

with the subsidiary condition

$$
e^{x} \alpha^{\prime}+e^{-x} \beta^{\prime}=0 .
$$

Then differentiating twice and applying the subsidiary condition, we have

$$
\frac{d^{2} y}{d x^{2}}=\alpha e^{x}+\beta e^{-x}+e^{x} \alpha^{\prime}-e^{-x} \beta^{\prime}
$$

or

$$
e^{x} \alpha^{\prime}-e^{-x} \beta^{\prime}=x^{n} .
$$

Thus

$$
y(x)=A e^{x}+B e^{-x}+\int_{0}^{x} d t t^{n} \sinh (x-t) .
$$

(b) $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=2 x e^{x}$

Solution: The independent solutions of the homogeneous equation are e^{x} and $x e^{x}$ so let

$$
\begin{aligned}
y(x) & =\alpha(x) e^{x}+\beta(x) x e^{x} \\
\text { and find } \beta & =x^{2}, \alpha=-2 x^{3} / 3 .
\end{aligned}
$$

5. Riley 13.7:

The Green's function is

$$
G(x, t)=\frac{y_{2}(x) y_{1}(t)}{w(x)} \theta(x-t)+\frac{y_{1}(x) y_{2}(t)}{w(x)} \theta(t-x)
$$

where $\left.y_{2}(0) \neq 0, y_{2}(\pi)=0, y_{1}(0)=0, y_{(} \pi\right) \neq 0$. Since the solutions of the homogeneous equation that satisfy these criteria are $y_{1}(x)=$ $\sin (x / 2), y_{2}(x)=\cos (x / 2)$, and since the Wronskian is

$$
w(x)=\frac{d y_{2}}{d x} y_{1}-\frac{d y_{1}}{d x} y_{2}=-\frac{1}{2} \sin ^{2}\left(\frac{x}{2}\right)-\frac{1}{2} \cos ^{2}\left(\frac{x}{2}\right)=-\frac{1}{2}
$$

we have

$$
G(x, t)=-2 \cos (x / 2) \sin (t / 2) \theta(x-t)-2 \cos (t / 2) \sin (x / 2) \theta(t-x) .
$$

6. Riley 14.4 Part (a):

$$
z y^{\prime \prime}-2 y^{\prime}+z y=0
$$

so let

$$
y(z)=\sum_{n=0}^{\infty} a_{n} z^{n+\alpha} ;
$$

the indicial equation is

$$
\alpha(\alpha-1)-2 \alpha=0,
$$

or $\alpha=0,3$.
We get a 2 -term recursion relation

$$
(\alpha+n+2)(\alpha+n-1) a_{n+2}+a_{n}=0 .
$$

With $\alpha=0$ and $a_{1}=0$, the terms are

$$
z^{0}+\frac{1}{2} z^{2}-\frac{}{4 \cdot 2} z^{4}+\frac{1}{6 \cdot 3 \cdot 4 \cdot 2} z^{6}-\frac{1}{8 \cdot 5 \cdot 6 \cdot 3 \cdot 4 \cdot 2} z^{8}+\ldots
$$

which we rewrite as

$$
\begin{aligned}
-\frac{(-1)}{0!} z^{0} & +\frac{1}{2!} z^{2}-\frac{3}{4!} z^{4}+\frac{5}{6!} z^{6}-\frac{7}{8!} z^{8}+\ldots \\
& =\sum_{n=0}^{\infty} \frac{(2 n-1)(-1)^{n+1}}{(2 n)!} z^{2 n}=y_{2}(z)
\end{aligned}
$$

With $\alpha=3$ we get, similarly, the terms

$$
\begin{aligned}
z^{3} & -\frac{1}{2 \cdot 5} z^{5}+\frac{1}{2 \cdot 4 \cdot 5 \cdot 7} z^{7}-+\ldots \\
& =\frac{3 \cdot 2}{3!} z^{3}-\frac{3 \cdot 4}{5!} z^{5}+\frac{3 \cdot 6}{7!} z^{7}-+\ldots \\
& =3 \sum_{n=1}^{\infty} \frac{2 n(-1)^{n+1}}{(2 n+1)!} z^{2 n+1}=y_{1}(z) .
\end{aligned}
$$

Part (b): If we expand the sinusoidal functions in power series we get

$$
\begin{aligned}
\sin z & -z \cos z=\sum_{n=0}^{\infty}(-1)^{n}\left[\frac{z^{2 n+1}}{(2 n+1)!}-\frac{z^{2 n+1}}{(2 n)!}\right] \\
& =\sum_{n=0}^{\infty}(-1)^{n+1} \frac{(2 n+1-1) z^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty}(-1)^{n+1} \frac{2 n z^{2 n+1}}{(2 n+1)!},
\end{aligned}
$$

which is $y_{1}(z)$ within the requisite factor 3 .
To get the other solution using the Wronskian method we write

$$
y_{2}(z)=u(z) y_{1}(z)
$$

so that

$$
u^{\prime}(z)=A \frac{z^{2}}{\left[y_{1}(z)\right]^{2}} .
$$

Integrating we find

$$
y_{2}(z)=u(z) y_{1}(z)=A y_{1}(z) \int^{z} \frac{t^{2} d t}{\left[y_{1}(t)\right]^{2}}=A y_{1}(z) \int^{z} \frac{t^{2} d t}{(\sin t-t \cos t)^{2}},
$$

or using the hint to perform the integral by parts,

$$
y_{2}(z)=A(z \sin z+\cos z) .
$$

Expanding we recover the series

$$
-\frac{(-1)}{0!} z^{0}+\frac{1}{2!} z^{2}-\frac{3}{4!} z^{4}+\frac{5}{6!} z^{6}-\frac{7}{8!} z^{8}+\ldots
$$

which we identify with y_{2}, within a multiplicative factor.
Part (c): Calculating the Wronskian we get

$$
\begin{aligned}
& (z \sin z+\cos z)^{\prime}(\sin z-z \cos z)-(z \sin z+\cos z)(\sin z-z \cos z)^{\prime} \\
& \quad=(z \cos z)(\sin z-z \cos z)-(z \sin z+\cos z)(z \sin z)=-z^{2} \not \equiv 0
\end{aligned}
$$

7. Riley 14.5

The equation is $y^{\prime \prime}-2 z y^{\prime}-2 y=0$; the power series solution about $z=0$ is

$$
y(z)=\sum_{n=0}^{\infty} c_{n} z^{n}
$$

leading to the recursion relation $c_{n+2}=2 c_{n} /(n+2)$; with $c_{0}=1$ and $c_{1}=0$ we get

$$
y(z)=\exp \left(z^{2}\right) .
$$

We can get a second solution using $y_{1}(z)=\exp \left(z^{2}\right) v(z)$ which gives $v^{\prime \prime}+2 z v^{\prime}=0$ or

$$
v(z)=A \int_{0}^{z} d t \exp \left(-t^{2}\right)+v(0)
$$

which, with $A=1$ and $v(0)=0$ gives

$$
y_{1}(z)=\int_{0}^{z} d t \exp \left(z^{2}-t^{2}\right) .
$$

But this must be the power-series solution obtained with $c_{0}=0, c_{1}=1$ which is

$$
y_{1}(z)=z \sum_{n=0}^{\infty}\left(2 z^{2}\right)^{n} \frac{1}{(2 n+1)!!} \equiv \int_{0}^{z} d t \exp \left(z^{2}-t^{2}\right),
$$

where $(2 n+1)!!\stackrel{d f}{=}(2 n+1) \times(2 n-1) \times \ldots \times(1)$.
8. Riley 14.8

The differential equation for the Hermite polynomials is

$$
H_{n}^{\prime \prime}-2 z H_{n}^{\prime}+2 n H_{n}=0 ;
$$

if we define the generating function

$$
G(z, t) \stackrel{d f}{=} \sum_{n=0}^{\infty} H_{n}(z) \frac{t^{n}}{n!}
$$

then the differential equation may be multiplied by $t^{n} / n!$ and summed to get

$$
\frac{\partial^{2} G}{\partial z^{2}}-2 z \frac{\partial G}{\partial z}+2 t \frac{\partial G}{\partial t}=0
$$

Since we are given the solution,

$$
G(z, t) \stackrel{d f}{=} \sum_{n=0}^{\infty} H_{n}(z) \frac{t^{n}}{n!}=\exp \left(2 z t-t^{2}\right)
$$

we can differentiate with respect to z to get

$$
\sum_{n=0}^{\infty} H_{n}^{\prime}(z) \frac{t^{n}}{n!}=2 t \exp \left(2 z t-t^{2}\right)=2 \sum_{n=0}^{\infty} H_{n}(z) \frac{t^{n+1}}{n!}
$$

Comparing like powers of t we see that

$$
\frac{d H_{n}}{d z}=2 n H_{n-1}
$$

We can also differentiate G with respect to t to get

$$
\frac{d}{d t} \exp \left(2 z t-t^{2}\right)=2(z-t) \sum_{n=0}^{\infty} H_{n}(z) \frac{t^{n}}{n!}=\sum_{n=1}^{\infty} H_{n}(z) \frac{n t^{n-1}}{n!}
$$

or

$$
\sum_{n=0}^{\infty} \frac{t^{n}}{n}\left[2 z H_{n}(z)-2 n H_{n-1}(z)-H_{n+1}(z)\right]=0 .
$$

Comparing coefficients of t^{n} we get the desired result,

$$
H_{n+1}-2 z H_{n}+2 n H_{n-1}=0 .
$$

9. Riley 14.9

Clearly

$$
G(z, t)=\exp \left(2 z t-t^{2}\right) \equiv \exp \left(2 z t-t^{2}-z^{2}+z^{2}\right)=\exp \left(z^{2}\right) \exp \left((z-t)^{2}\right)
$$

so that

$$
\begin{aligned}
\exp \left(-z^{2}\right) H_{n}(z) & =\left.\frac{\partial^{n}}{\partial t^{n}} \exp \left(-(z-t)^{2}\right)\right|_{t=0} \\
& \left.\equiv\left(\frac{-\partial}{\partial z}\right)^{n} \exp \left(-(z-t)^{2}\right)\right|_{t=0}=\left(\frac{-\partial}{\partial z}\right)^{n} \exp \left(-z^{2}\right)
\end{aligned}
$$

or

$$
H_{n}(z)=\exp \left(z^{2}\right)\left(\frac{-\partial}{\partial z}\right)^{n} \exp \left(-z^{2}\right)
$$

10. Non-riley problem:

The driven, damped oscillator is defined by

$$
\ddot{x}+\gamma \dot{x}+\omega^{2} x=\frac{f(t)}{m}=Q(t) .
$$

Using the operator method (or Laplace transform, or variation of parameters) we find

$$
x(t)=\int_{0}^{t} d s K(t-s) Q(s)+x_{0}(t)
$$

where

$$
\begin{aligned}
& K(t-s)=\frac{1}{\Omega} e^{-\gamma(t-s) / 2} \sin [\Omega(t-s)], \\
& \Omega^{2}=\omega^{2}-\frac{\gamma^{2}}{4},
\end{aligned}
$$

and where $x_{0}(t)$ is any solution of the homogeneous equation. Similarly, by direct differentiation or any other method we find

$$
\dot{x}(t)=\int_{0}^{t} d s \Lambda(t-s) Q(s)+\dot{x}_{0}(t)-\frac{\gamma}{2} x(t)
$$

where

$$
\Lambda(t-s)=e^{-\gamma(t-s) / 2} \cos [\Omega(t-s)]
$$

We now assume $Q(t)$ is a random function with the ensemble averages characteristic of Gaussian white noise:

$$
\begin{aligned}
& \langle Q(t)\rangle=0 \\
& \langle Q(t) Q(s)\rangle=\frac{\sigma^{2}}{m^{2}} \delta(t-s) .
\end{aligned}
$$

Then we can find the expected values and variances of $x(t)$ and $\dot{x}(t)$:

$$
\begin{aligned}
& \langle x(t)\rangle=x_{0}(t), \\
& \begin{aligned}
\langle\dot{x}(t)\rangle=\dot{x}_{0}(t)-\frac{\gamma}{2}\langle x(t)\rangle
\end{aligned} \\
& \begin{aligned}
\left\langle(x(t)-\langle x(t)\rangle)^{2}\right\rangle & =\frac{\sigma^{2}}{m^{2}} \int_{0}^{t} d s[K(t-s)]^{2} \\
\rightarrow & \frac{\sigma^{2}}{2 m^{2} \Omega^{2} \gamma}\left(1-\frac{\gamma^{2}}{\gamma^{2}+4 \Omega^{2}}\right)=\frac{\sigma^{2}}{2 m^{2} \omega^{2} \gamma}
\end{aligned} \\
& \begin{aligned}
&\left\langle(\dot{x}(t)-\langle\dot{x}(t)\rangle)^{2}\right\rangle= \\
& \quad \frac{\sigma^{2}}{m^{2}}\left(\int_{0}^{t} d s[\Lambda(s)]^{2}-\gamma \int_{0}^{t} d s \Lambda(s) K(s)+\frac{\gamma^{2}}{4} \int_{0}^{t} d s[K(s)]^{2}\right) \\
& \underset{t \rightarrow \infty}{\rightarrow} \frac{\sigma^{2}}{2 m^{2} \gamma}\left(1+\frac{\gamma^{2}}{4 \omega^{2}}+\frac{\gamma^{2}}{4 \omega^{2}}-\frac{2 \gamma^{2}}{4 \omega^{2}}\right)=\frac{\sigma^{2}}{2 m^{2} \gamma}
\end{aligned}
\end{aligned}
$$

Thus, for large t, after the system has settled down, the ensemble average of the (fluctuational) energy of a harmonic oscillator driven by noise is

$$
\langle H\rangle=\frac{m}{2}\left[\left\langle(\dot{x}(t)-\langle\dot{x}(t)\rangle)^{2}\right\rangle+\omega^{2}\left\langle(x(t)-\langle x(t)\rangle)^{2}\right\rangle\right]=\frac{\sigma^{2}}{m \gamma} .
$$

Note that this energy is independent of the oscillator frequency, as long as the oscillator is underdamped.

This result is exactly twice the ensemble-averaged kinetic energy which, in the limit that the particle is unbound, is expected to be

$$
\frac{\sigma^{2}}{2 m \gamma}=\frac{k T}{2} ;
$$

that is, the equilibrium thermal energy of an oscillator in a thermal bath at absolute temperature T is $k T$.

