
PHYS 725 HW #4. Due 15 November 2001

1. Riley 12.3:

R
dq

dt
+

q

C
= V (t) ;

The solution is obtained with the integrating factor exp (t/RC), giving

q(t) = e�t/RC
�
1

R

Z t

0
dsV (s) es/RC + q(0)

�
:

With q(0) = 0 and V (t) = V0 sin(!t) we thus have

q(t) = e�t/RC
V0

R
Im

�Z t

0
ds ei!ses/RC

�

= CV0Im
�

1

i!RC + 1

�
ei!t � e�t/RC

��

=
CV0q

1 + (!RC)2

2
4sin �!t� tan�1(!RC)

�
+

!RCe�t/RCq
1 + (!RC)2

3
5 :

We can see this is right by comparing the behavior at small t|we
should get

q(t) � !V0
t2

2R
:

2. Riley 12.4:
The equation

(y � x)
dy

dx
+ 2x+ 3y = 0

is homogeneous of degree 1, so substituting y(x) = x v(x) we �nd

(v � 1)
dv

dx
+ 1 + (v + 1)2 = 0

or with v = u� 1,

Z (u� 2) du

1 + u2
=

1

2
ln
�
1 + u2

�
� 2 tan�1 u = �

Z
dx = �x + A :
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3. Riley 12.9:
The equation

sinx
dy

dx
+ 2y cos x = 1

can be reduced to a quadrature by the standard integrating factor,

f(x) = exp
�
2
Z x

dt
cos t

sin t

�
= exp (2 ln(sinx)) = sin2 x ;

applying this we have

sin2 x
dy

dx
+ 2y cos x sinx �

d

dx

�
y sin2 x

�
= sin x

or

y sin2 x = � cos x + 1 =
sin2 x

1 + cos x
;

y =
1

1 + cos x

where we have applied the boundary condition y (�/2) = 1 to determine
the constant in the solution.

4. Riley 13.6:
Use the method of variation of parameters to �nd the general solutions
of

(a) d2y

dx2
� y = xn

Solution: The independent solutions of the homogeneous equa-
tion are ex and e�x so we let

y(x) = � (x) ex + � (x) e�x ;

with the subsidiary condition

ex�0 + e�x� 0 = 0 :
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Then di�erentiating twice and applying the subsidiary condition,
we have

d2y

dx2
= �ex + �e�x + ex�0 � e�x� 0 ;

or

ex�0 � e�x� 0 = xn :

Thus

y(x) = Aex +Be�x +
Z x

0
dt tn sinh (x� t) :

(b) d2y

dx2
� 2 dy

dx
+ y = 2xex

Solution: The independent solutions of the homogeneous equa-
tion are ex and xex so let

y (x) = � (x) ex + � (x) xex

and �nd � = x2, � = �2x3/3.

5. Riley 13.7:
The Green's function is

G(x; t) =
y2(x)y1(t)

w(x)
�(x� t) +

y1(x)y2(t)

w(x)
�(t� x)

where y2(0) 6= 0, y2(�) = 0, y1(0) = 0, y(�) 6= 0. Since the solutions
of the homogeneous equation that satisfy these criteria are y1 (x) =
sin (x/2), y2 (x) = cos (x/2), and since the Wronskian is

w(x) =
dy2

dx
y1 �

dy1

dx
y2 = �

1

2
sin2

�
x

2

�
�

1

2
cos2

�
x

2

�
= �

1

2

we have

G(x; t) = �2 cos (x/2) sin (t/2) �(x� t)� 2 cos (t/2) sin (x/2) �(t� x) :

6. Riley 14.4 Part (a):

zy00 � 2y0 + zy = 0
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so let

y(z) =
1X
n=0

anz
n+� ;

the indicial equation is

� (�� 1)� 2� = 0 ;

or � = 0; 3.

We get a 2-term recursion relation

(� + n+ 2) (� + n� 1) an+2 + an = 0 :

With � = 0 and a1 = 0, the terms are

z0 +
1

2
z2 �

4 � 2
z4 +

1

6 � 3 � 4 � 2
z6 �

1

8 � 5 � 6 � 3 � 4 � 2
z8 + : : :

which we rewrite as

�
(�1)

0!
z0 +

1

2!
z2 �

3

4!
z4 +

5

6!
z6 �

7

8!
z8 + : : :

=
1X
n=0

(2n� 1) (�1)n+1

(2n)!
z2n = y2(z) :

With � = 3 we get, similarly, the terms

z3 �
1

2 � 5
z5 +

1

2 � 4 � 5 � 7
z7 �+ : : :

=
3 � 2

3!
z3 �

3 � 4

5!
z5 +

3 � 6

7!
z7 �+ : : :

= 3
1X
n=1

2n (�1)n+1

(2n + 1)!
z2n+1 = y1 (z) :
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Part (b): If we expand the sinusoidal functions in power series we get

sin z � z cos z =
1X
n=0

(�1)n
"

z2n+1

(2n+ 1)!
�
z2n+1

(2n)!

#

=
1X
n=0

(�1)n+1
(2n+ 1� 1) z2n+1

(2n+ 1)!
=

1X
n=0

(�1)n+1
2nz2n+1

(2n+ 1)!
;

which is y1(z) within the requisite factor 3.

To get the other solution using the Wronskian method we write

y2 (z) = u (z) y1 (z)

so that

u0 (z) = A
z2

[y1 (z)]
2 :

Integrating we �nd

y2 (z) = u (z) y1 (z) = Ay1 (z)
Z z t2dt

[y1 (t)]
2 = Ay1 (z)

Z z t2dt

(sin t� t cos t)2
;

or using the hint to perform the integral by parts,

y2(z) = A (z sin z + cos z) :

Expanding we recover the series

�
(�1)

0!
z0 +

1

2!
z2 �

3

4!
z4 +

5

6!
z6 �

7

8!
z8 + : : :

which we identify with y2, within a multiplicative factor.

Part (c): Calculating the Wronskian we get

(z sin z + cos z)0 (sin z � z cos z)� (z sin z + cos z) (sin z � z cos z)0

= (z cos z) (sin z � z cos z)� (z sin z + cos z) (z sin z) = �z2 6� 0 :
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7. Riley 14.5

The equation is y00 � 2zy0 � 2y = 0 ; the power series solution about
z = 0 is

y(z) =
1X
n=0

cnz
n

leading to the recursion relation cn+2 = 2cn/(n+ 2) ; with c0 = 1 and
c1 = 0 we get

y(z) = exp
�
z2
�
:

We can get a second solution using y1(z) = exp (z2) v(z) which gives
v00 + 2zv0 = 0 or

v(z) = A

Z z

0
dt exp

�
�t2

�
+ v(0)

which, with A = 1 and v(0) = 0 gives

y1(z) =
Z z

0
dt exp

�
z2 � t2

�
:

But this must be the power-series solution obtained with c0 = 0, c1 = 1
which is

y1(z) = z
1X
n=0

�
2z2

�n 1

(2n+ 1)!!
�
Z z

0
dt exp

�
z2 � t2

�
;

where (2n + 1)!!
df
=(2n + 1)� (2n� 1)� : : :� (1).

8. Riley 14.8

The di�erential equation for the Hermite polynomials is

H 00

n � 2zH 0

n + 2nHn = 0 ;
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if we de�ne the generating function

G (z; t)
df
=

1X
n=0

Hn(z)
tn

n!

then the di�erential equation may be multiplied by tn/n! and summed
to get

@2G

@z2
� 2z

@G

@z
+ 2t

@G

@t
= 0 :

Since we are given the solution,

G (z; t)
df
=

1X
n=0

Hn(z)
tn

n!
= exp

�
2zt� t2

�
;

we can di�erentiate with respect to z to get

1X
n=0

H 0

n(z)
tn

n!
= 2t exp

�
2zt� t2

�
= 2

1X
n=0

Hn(z)
tn+1

n!
:

Comparing like powers of t we see that

dHn

dz
= 2nHn�1 :

We can also di�erentiate G with respect to t to get

d

dt
exp

�
2zt� t2

�
= 2 (z � t)

1X
n=0

Hn(z)
tn

n!
=

1X
n=1

Hn(z)
ntn�1

n!

or

1X
n=0

tn

n
[2zHn(z)� 2nHn�1(z)�Hn+1(z)] = 0 :

Comparing coeÆcients of tn we get the desired result,

Hn+1 � 2zHn + 2nHn�1 = 0 :
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9. Riley 14.9

Clearly

G (z; t) = exp
�
2zt� t2

�
� exp

�
2zt� t2 � z2 + z2

�
= exp

�
z2
�
exp

�
(z � t)2

�

so that

exp
�
�z2

�
Hn(z) =

@n

@tn
exp

�
� (z � t)2

������
t=0

�

 
�@

@z

!n

exp
�
� (z � t)2

������
t=0

=

 
�@

@z

!n

exp
�
�z2

�

or

Hn(z) = exp
�
z2
� �@

@z

!n

exp
�
�z2

�
:

10. Non-riley problem:
The driven, damped oscillator is de�ned by

�x+ 
 _x + !2x =
f (t)

m
= Q (t) :

Using the operator method (or Laplace transform, or variation of pa-
rameters) we �nd

x (t) =
Z t

0
dsK (t� s)Q (s) + x0 (t)

where

K (t� s) =
1



e�
(t�s)/2 sin [
 (t� s)] ;


2 = !2 �

2

4
;

and where x0(t) is any solution of the homogeneous equation. Similarly,
by direct di�erentiation or any other method we �nd

_x (t) =
Z t

0
ds� (t� s)Q (s) + _x0 (t)�




2
x (t) ;
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where

� (t� s) = e�
(t�s)/2 cos [
 (t� s)] :

We now assume Q(t) is a random function with the ensemble averages
characteristic of Gaussian white noise:

hQ(t)i = 0

hQ(t)Q(s)i =
�2

m2
Æ (t� s) :

Then we can �nd the expected values and variances of x(t) and _x(t):

hx(t)i = x0(t) ;

h _x(t)i = _x0(t)�



2
hx(t)i

D
(x(t)� hx(t)i)2

E
=

�2

m2

Z t

0
ds [K (t� s)]2

!
t!1

�2

2m2
2


 
1�


2


2 + 4
2

!
=

�2

2m2!2


D
( _x(t)� h _x(t)i)2

E
=

�2

m2

 Z t

0
ds [� (s)]2 � 


Z t

0
ds� (s)K (s) +


2

4

Z t

0
ds [K (s)]2

!

!
t!1

�2

2m2


 
1 +


2

4!2
+


2

4!2
�

2
2

4!2

!
=

�2

2m2


Thus, for large t, after the system has settled down, the ensemble
average of the (
uctuational) energy of a harmonic oscillator driven
by noise is

hHi =
m

2

hD
( _x(t)� h _x(t)i)2

E
+ !2

D
(x(t)� hx(t)i)2

Ei
=

�2

m

:
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Note that this energy is independent of the oscillator frequency, as long
as the oscillator is underdamped.

This result is exactly twice the ensemble-averaged kinetic energy which,
in the limit that the particle is unbound, is expected to be

�2

2m

=

kT

2
;

that is, the equilibrium thermal energy of an oscillator in a thermal
bath at absolute temperature T is kT .
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