
PHYS 725 HW #5. Due 6 December 2001

1. Riley 15.8

Solution:

Problem was to �nd eigenvalues and eigenfunctions of

Ly
df
=x2

d2y

dx2
+ 2x

dy

dx
+ 1

4
y = �y :

Substitute y = et and get

�y + _y + 1
4
y = �y :

Now eliminate the �rst derivative term with the substitution y = e�t/2v
to get

�v = �v

subject to v(0) = v(1) = 0. Hence

v(t) = sin (n�t)

and

� = �n2�2 :

Therefore

yn (x) = x�
1/2 sin (n� lnx) :

To express the solution of

Ly = x�
1/2

we expand y(x) in the (complete set of) eigenfunctions of L:

y(x) =
1X
n=1

cnyn(x) ;

1



then

�
1X
n=1

cnn
2�2yn(x) = x�

1/2 :

Multiplying both sides by yn(x) and integrating from x = 1 to x = e

we get (after changing variables to t = lnx)

�cnn2�2
Z 1

0
dt sin2 (n�t) =

Z 1

0
dt sin (n�t)

or

cn =
�2
n3�3

[1� (�1)n] :

2. Riley 15.9

Solution:

In physicists' units we have

r2' = �4�� (~x) :

This is most easily done by Fourier transform, although we could also
solve the equation

r2G = Æ (~x) :

To �nd the Green's function directly, note that

1

r2
@

@r

 
r2
@G

@r

!
=
A

r2
Æ (r)

(the form of the above follows from the fact that the volume element
in spherical polar coordinates is d3r = r2 sin �drd�d�); then

@G

@r
=
A

r2
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and

G = �A
r
= � 1

4�r
:

To do it by Fourier transform, we multiply the equation

r2' = �4�� (~x)

by exp
�
i~k � ~r

�
and integrate over all space:

Z
d3r ei

~k�~rr2' (~r) = �4�
Z
d3r ei

~k�~r� (~r)

Then, manifestly,

' (~r) = 4�
Z
d3r0� (~r0)

Z
d3k

(2�)3
1

k2
ei
~k�(~r0�~r) ;

where we have interchanged the orders of integration. Performing the
integral over ~k we have

' (~r) =
Z
d3r0

� (~r0)
j~r0 � ~rj

2

�

Z 1

0

dk

k
sin (k j~r0 � ~rj) �

Z
d3r0

� (~r0)
j~r0 � ~rj :

3. Riley 15.10

Solution:

This one was essentially done in class: we want the outgoing-wave
solution of

�
�r2 �K2

�
	(~r) = F (~r) :

We Fourier transform and eventually must perform the integral

Z
d3k

(2�)3
ei
~k�~s

k2 �K2 � i"
=

1

4�2is

Z 1

�1
dk k

eiks

k2 �K2 � i"
:
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In the limit as "! 0 we have

eiks

4�s
;

or in other words,

	 (~r) =
Z
d3r0

F (~r0) eikj~r�~r
0j

4� j~r � ~r0j :

4. Riley 21.1

Solution:

We were to solve the equation

Z 1

0
dv cos (uv) y (v) = exp

�
�u2

.
2
�
:

We notice that

Z 1

0
dv cos (uv) y (v) =

1

2

Z 1

�1
dv eiuv [y (v) � (v) + y (�v) � (�v)]

so we can solve for the unknown function

h (v)
df
= y (v) � (v) + y (�v) � (�v)

by Fourier-transforming both sides. Thus

h (v) =

s
4

�
exp

�
�v2

.
2
�
;

which is the solution for v > 0.
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5. Riley 21.2

Solution:

We recognizeZ 1

0
f (x) e�sxdx =

a

a2 + s2

as a Laplace transform|therefore we inverse transform (or use a table
of inverse Laplace transforms) to �nd

f (x) =
1

2�i

Z c+i1

c�i1
ds esx

a

a2 + s2
= sin ax :

6. Riley 21.3

Solution:

We want to solve the Volterra equation

f (x) = ex +
Z x

0
(x� y) f (y) dx :

Di�erentiate twice with respect to x to obtain

d2f

dx2
� f = ex

subject to initial conditions f(0) = f 0(0) = 1. Laplace transform to
solve:

�
s2 � 1

�
~f (s) =

1

s� 1
+ sf (0) + f 0 (0) =

s2

s� 1
;

or

f (x) =
1

2�i

Z c+i1

c�i1
ds

s2esx

(s+ 1) (s� 1)2

� ex
1

2�i

Z c+i1

c�i1
ds

(s+ 1)2 esx

(s + 2) s2

=
e�x

4
+ ex

�
3

4
+
x

2

�
:
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Note we could also have Laplace transformed the integral equation and
used the convolution theorem, since it has a di�erence kernel.

7. Riley 21.5

Solution:

Expand  =
P
n
anhn and substitute:

X
n

anhn = �
X
n

hn (gn;  ) � �
X
n

X
m

hn (gn; hm) am

or

an = �
X
m

Mnmam :

Therefore the eigenvalues are given by det [I � �M ] = 0 which is the
same thing as det [��1I �M ] = 0 . The coeÆcients an are the compo-
nents of the corresponding eigenvector in discrete representation.

Applying this to

 (x) = �

Z 2�

0
dy K (x; y) (y)

where

K (x; y) =
1X
n=1

1
n
cos (nx) cos (ny) ;

we have

an
df
=
Z 2�

0
dx (x) cos (nx) =

��

n
an :

Therefore the eigenvalues are � = n/� and the eigenfunctions are
cos(nx).
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8. Riley 21.8

Solution:

We are to solve

f (x) = x2 + 2
Z 1

0
(x + y) ex�yf (y) dy

by the Fredholm method. The kernel (x+ y) exp(x� y) is separable so
we do not really need Fredholm theory. However, let us compute the
Fredholm resolvent. From Riley, et al. we use the recursion relations

dn = TrDn�1

Dn (x; y) = K (x; y) dn �
Z
dz K (x; z)Dn�1 (z; y)

to compute the coeÆcients

d0 = 1 D0 (x; y) = (x + y) ex�y

d1 = TrD0 =
R 1
0 2xdx = 1 D1 = ex�y

�
x
2
+ y

2
� xy � 1

3

�
d2 = TrD1 =

�1
6

D2 = 0

The resolvent is therefore

R (x; y) = ex�y
2
4x + y � �

�
x
2
+ y

2
� xy � 1

3

�
1� �� �2/12

3
5 :

To solve the equation we set � = 2 and thus get

f (x) = x2 � ex (3xI3 + I2) ;

where

In =
Z 1

0
xne�xdx :
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9. What is the di�erential equation satis�ed by

y(x) = x�J�m (�x
) ?

Use this result to �nd the eigenvalues of the swinging chain. (This is
a uniform suspended chain whose lower end is free|thus the restoring
force is gravitational. The horizontal displacement of a point along the
chain obeys a linear, second-order pde that we discussed in class:

@2	

@t2
= g

@	

@x
+ gx

@2	

@x2
;

where x = 0 is the lower|free|end of the chain and x = L is the
upper end.)

Solution: To �nd the di�erential equation satis�ed by

y(x) = x�J�m (�x
)

we let u = x
 so that

J�m (�u) = u��/
y
�
u1/


�
:

Since

u2
d2J

du2
+ u

dJ

du
+
�
�2u2 �m2

�
J = 0 ;

we see that

u2/



2
d2y

dx2
+
u1/





 
1



� 2�




!
dy

dx
+

 
�2u2 +

�2


2
�m2

!
y = 0 ;

which may be rewritten

x2
d2y

dx2
+ x (1� 2�)

dy

dx
+
�
�2
2x2
 + �2 �m2
2

�
y = 0 :

To solve the pde we let 	(x; t) = ei!t (x) giving

x
d2 

dx2
+
d 

dx
+
!2

g
 = 0
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which has the solution

 (x) = AJ0

�
2!
q
x/g

�
:

Since  (x = L) = 0 the eigenvalues ! must be given by the roots of

J0

�
2!
q
L/g

�
= 0 ;

the smallest of these is 2:4048 : : : so the smallest value of ! is

1:20241 : : : �
q
g/L :

10. Energy in a star is produced in nuclear reactions initiated by collisions.
If the number of collisions per unit time, of particles with CM kinetic
energy between E and E + dE is NEe�E/� where � = kBT is the
absolute temperature in energy units and N is a constant; and if the

probability that a collision will result in a reaction is Me��/
p
E (again

M and � are constants), use the method of steepest descents to estimate
the rate of nuclear reactions, assuming

�
�
.
�2
�1/6 � 1 :

Solution:

The reaction rate is

dn

dt
=MN

Z 1

0
dE Ee�E/�e��/

p
E

so we identify the function f(E) whose saddle point we must seek as

f(E) = lnE � E

�
� �p

E
:

Setting the derivative to 0 we �nd

df

dE
=

1

E
� 1

�
+

�

2E3/2
= 0
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or with

u =
�p
E

we have

2u2 + u3 =
2�2

�
� 1 ;

whose approximate solution is

u �
 
2�2

�

!1/3

� 2

3
�
 
2�2

�

!1/3

:

The second derivative is

d2f

dE2

�����
E=E0

� � 3�

4E
5/2
0

< 0 ;

hence the saddle point is a maximum and lies on the real positive
E�axis. We may therefore replace the integral with

Z 1

0
dE ef(E) � ef(E0)

Z 1

�1
dEe(E�E0)

2f 00

0 /2 =

s
2�

jf 000 j
ef(E0)

giving

dn

dt
� MN�

s
��3

3
exp

2
4�3

2

 
2�2

�

!1/3
3
5 :

11. Apply the Gram-Schmidt orthogonalization method to the monomials
x0, x1, and x2 to derive the �rst 3 Hermite polynomials H0, H1, and
H2, where these polynomials are orthogonal on the interval (�1;+1)
with respect to the weight function e�x

2

. Do not bother to normalize
the polynomials.
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Solution:

Z 1

�1
dxe�x

2

Hm (x)Hn (x) =
�
0; m 6= n

1; m = n
:

To evaluate integrals like

Ik (�) =
Z 1

�1
dx x2ke��x

2

we note that

I0 (�) =

r
�

�
;

I1 (�) = �dI0 (�)
d�

=
1

2

r
�

�3
;

: : :

Manifestly,

H0 (x) = (�)�1/4 ;

H1 (x) = x

�
�

4

��1/4
;

and we can then �nd H2 by insisting it be orthogonal to H0 and H1:

H2 (x) = x2 �H0 (x)
�
H0; x

2
�
�H1 (x)

�
H1; x

2
�
=

x2 � (�)�1/4
Z 1

�1
dse�s

2

(�)�1/4 s2

�x
�
�

4

��1/4 Z 1

�1
dse�s

2

s

�
�

4

��1/4
s2

N

�
x2 � 1

2

�
:
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12. The Schrdinger equation of the hydrogenic atom is

� �h2

2m
r2 � Ze2

r
 = E :

Estimate the ground state energy using the trial function e��r
2

.

Solution:

We want to minimize the functional

E f g =
RRR
d3r

�
�h2

2m
r � � r � Ze2

r
j j2

�
RRR
d3r j j2 ;

with our trial function we have

re��r2 = �2�~r e��r2

hence we must minimize (we let 2� = �)

E (�) =

R1
0 dr r2

�
�h2

2m
�2r2 � Ze2

r

�
e��r

2

R1
0 dr r2e��r2

=
3�h2

16m
��1/2

p
� � Ze2

2�
1
4

p
� ��3/2

=
3�h2

4m
�� 2Ze2p

�
�1/2 ;

whose minimum is

Emin = �4Z2e4m

3��h2
= �

�
8

3�

�
Z2Ry � �0:85Z2Ry :

13. Solve the integral equation

Z 1

�1
e�jx�yjf(y) dy =

1

x2 + 1

Solution:

This is a di�erence kernel on an in�nite interval. Hence we can apply
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the convolution theorem for Fourier transforms. De�ning the Fourier
transform as

F (f) =
Z 1

�1
eikxf(x) dx

we have

F
�Z 1

�1
e�jx�yjf(y) dy

�
� F (K � f) = F (K)F (f) :

Hence

Z 1

�1
eikx

x2 + 1
dx = �e�jkj

Z 1

�1
eikxe�jxj dx =

2

k2 + 1

F (f) =
�

2
e�jkj

�
k2 + 1

�

and we can see easily that the inverse transform gives

f (x) =
1

2�

Z 1

�1
dk e�ikx

�

2
e�jkj

�
k2 + 1

�

=
1

2

Z 1

0
dk cos (kx) e�k

�
k2 + 1

�

=
1

2

 
1� d2

dx2

!
1

x2 + 1
=

1

2 (x2 + 1)

 
1 +

2� 6x2

(x2 + 1)2

!

14. Consider the operator de�ned by the kernel

K (x; y) =
1

x2 + y2 + 1
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(a) Show that it is Hermitian.

�Z
dx dy '� (x)K (x; y)' (y)

�y
=

Z
dx dy ' (x)K� (x; y)'� (y)

�
Z
dx dy ' (y)K (y; x)'� (x)

=
Z
dx dy '� (x)K (y; x)' (y)

That is, its diagonal matrix elements in any basis are real.

(b) Show that it represents a positive-de�nite operator.Z
dx dy '� (x)K (x; y)' (y) =

Z 1

0
ds e�s

����
Z
dx e�sx

2

' (x)
����2 > 0

(c) Show it is bounded.
By the secret theorem (p. 284�)

kKk � sup
x

1

� (x)

Z
dy jK (x; y)j� (y) :

Let us take the interval to be (�1;+1) and let �(x) = 1. Then

kKk � sup
x

Z 1

�1
dy

1

x2 + y2 + 1
= sup

x

�p
x2 + 1

= �

(d) Show that it is compact.
The Schmidt norm is de�ned by

kKk2S =
Z 1

�1
dx

Z 1

�1
dy

 
1

x2 + y2 + 1

!2

= �

Z 1

0
du

�
1

u+ 1

�2
= � :

Since this is �nite, the kernel is compact.

(e) Show that its eigenvalue spectrum is countably in�nite.
Compact kernels have a countable spectrum that accumulates only
at 0.
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15. Evaluate the integral

�2�d
Z
ddp

�
�2 + p2

��1
= �2�d
 (d)

Z 1

0
dp pd�1

�
�2 + p2

��1
:

Solution:

Following the hint we evaluate the angular factor 
 (d):


 (d) =

R1
0 dp pd�1e�p

2

�R1
�1 dp e�p2

�d =
1
2
� (d/2)

(�)d/2

so

�2�d
Z
ddp

�
�2 + p2

��1
=

� (d/2)

4 (�)d/2�1 sin (�d/2)
�2�d�d�2 :

The singularity at d = 4 is a simple pole.
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