PHYS 725 HW #5. Due 6 December 2001

1. Riley 15.8
Solution:

Problem was to find eigenvalues and eigenfunctions of

i o d%y dy

Substitute y = e’ and get
J+y+iy=Xy.

t/2

Now eliminate the first derivative term with the substitution y = e™"/?v
to get
U= v

subject to v(0) = v(1) = 0. Hence
v(t) = sin (nrt)
and
A= —n’r?.
Therefore
yn (z) = 2~ sin (nmlnz) .
To express the solution of
Ly = x’l/Q

we expand y(x) in the (complete set of) eigenfunctions of L:

y(z) = i Can(1)



then
ol 1
— Z a2 yn(z) = 27 2.
n=1

Multiplying both sides by y,(x) and integrating from z = 1 to z = e
we get (after changing variables to ¢t = Inx)

1 1
—cnn27r2/ dt sin® (nmt) = / dt sin (nmt)
0 0

or
—9 .
Cn = N33 [1 - (_1) ] :
. Riley 15.9
Solution:

In physicists’ units we have
Vip = —47p (T) .

This is most easily done by Fourier transform, although we could also
solve the equation

V3G = 6§ (%) .

To find the Green’s function directly, note that

10 (,0G) A
mor (M) = 00

(the form of the above follows from the fact that the volume element
in spherical polar coordinates is d*r = 72 sin 0drdfde); then

oG A

or  r?



and

To do it by Fourier transform, we multiply the equation
Vip = —drp (7)

by exp (zlz . F) and integrate over all space:
/d3r etk Vi (F) = —47r/d37"e

Then, manifestly,

3 -

where we have interchanged the orders of integration. Performing the
integral over k£ we have

o (7) = /d3"’ K in (|7 = 7)) = /d3’p()

|r—r7r0 k |7 — 7

. Riley 15.10
Solution:

This one was essentially done in class: we want the outgoing-wave
solution of

(V2= K*) ¥ (7) = F (7).

We Fourier transform and eventually must perform the integral

d?’k ik-§ 1 00 iks
[ = e | dbh—
(27)° k2 — K? —ie  4n%is J o k2 — K2 — e

3




In the limit as € — 0 we have

ezks

)
4rs

or in other words,

F(F’) 6zl~c|7?—r|
= 3
V@)= [dr Az 7 — 7|

. Riley 21.1
Solution:

We were to solve the equation
- dv cos (uv =e 2
/ (u0) y (v) = exp (—* /2) .
We notice that

/ dv cos (uv) / dv e““’

so we can solve for the unknown function

h(v)=y ()0 (v) +y(-v) 8 (-v)

by Fourier-transforming both sides. Thus

h o) :[ exp (1 /2) |

which is the solution for v > 0.

v) 0 (v) +y(=v) 0 (-v)]



5. Riley 21.2
Solution:
We recognize

/000 f(x) e *Fdx =

a
a? + s?

as a Laplace transform—therefore we inverse transform (or use a table
of inverse Laplace transforms) to find

1 c+i00 a

f(x)= —/ dse’” =sinazr.

271 Je—ioo a? + 52

6. Riley 21.3
Solution:

We want to solve the Volterra equation

fla)=e+ [ @=y)f ) d.
Differentiate twice with respect to x to obtain

d*f -

i A S

dx?
subject to initial conditions f(0) = f’(0) = 1. Laplace transform to
solve:

or

1 c+ioco S2esx
r) = — ds
/(@) 27i /H-oo (s+1)(s—1)°

emi /c+ioo s (S + 1)2 5T
c—100 (S + 2) 82

2m

e‘x+x<3+x>
= el l—-+=).

4 4 2
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Note we could also have Laplace transformed the integral equation and
used the convolution theorem, since it has a difference kernel.

. Riley 21.5
Solution:

Expand ¢ = Y a,h, and substitute:

Zanhn = )\Zhn (gn,¢) = )\ZZhn (gnahm) A
or

a, = )\ZManm-

Therefore the eigenvalues are given by det[I — AM] = 0 which is the
same thing as det [\™'] — M] = 0. The coefficients a,, are the compo-
nents of the corresponding eigenvector in discrete representation.

Applying this to
2
v (z) = A/O dy K (z,y) ¢ (y)

where

K (z,y) = i L cos (nx) cos (ny),

n=1
we have
a [ TA
anzf/ dx 1) (x) cos (nr) = — ay, .
0 n
Therefore the eigenvalues are A = n/m and the eigenfunctions are
cos(nx).



8. Riley 21.8
Solution:

We are to solve
1
f () :x2+2/0 (z+1y) e f (y)dy

by the Fredholm method. The kernel (z +y) exp(x —y) is separable so
we do not really need Fredholm theory. However, let us compute the
Fredholm resolvent. From Riley, et al. we use the recursion relations

dn = TI"Dn_l
Dy(,y) = K(@y)dn— [dzK (,2) Doy (2,)

to compute the coefficients

do =1 Dy (,y) = (x +y)e”?
dy =Tr Dy = [y 2xdz =1 Dlzex_y(ng%_ny—%)
dQZTrDIZ%l D2:0

The resolvent is therefore

x—i—y—)\(%ﬂL%—xy—%)
1— X —\2/12

R(xz,y) =¢€""

To solve the equation we set A\ = 2 and thus get
f(@) =2 —€e" (Bzl3+ 1) ,

where



9. What is the differential equation satisfied by
y(x) = 2% Jap (B27) 7

Use this result to find the eigenvalues of the swinging chain. (This is
a uniform suspended chain whose lower end is free—thus the restoring
force is gravitational. The horizontal displacement of a point along the
chain obeys a linear, second-order pde that we discussed in class:

0*W ov 0*W

a2 gﬁ_x 9T ox?’

where z = 0 is the lower—free—end of the chain and x = L is the
upper end.)

Solution: To find the differential equation satisfied by
y(@) = 2% Jom (B27)
we let u = 27 so that

Jim (Bu) = u=y (ul/V) :

Since
d*J dJ
2 2,2 2\ 7 _
we see that
w!vd?y w1 20 dy y 5 QP 9
Al AT T ) e - _ -0
e R CRY i G L
which may be rewritten
d*y dy
2 2,2, 2 2 2.2\, _
x@+x(1—2a)@+(ﬁ7x7+a —mv)y—O.

To solve the pde we let ¥ (z,t) = e™!)(x) giving

d*p  dyp  w?
T =0
Yz + dx + g 4



10.

which has the solution

O (x) = Ay (m@) .

Since ¢(x = L) = 0 the eigenvalues w must be given by the roots of

Jo <2w\/L/g> =0;
the smallest of these is 2.4048 . .. so the smallest value of w is

1.20241... x \/g/L.

Energy in a star is produced in nuclear reactions initiated by collisions.
If the number of collisions per unit time, of particles with CM kinetic
energy between E and E + dE is NEe "/® where © = kgT is the
absolute temperature in energy units and N is a constant; and if the

probability that a collision will result in a reaction is Me—/VE (again
M and « are constants), use the method of steepest descents to estimate
the rate of nuclear reactions, assuming

(0/0")" <1.

Solution:
The reaction rate is

d 00
d_;’ _ MN / dE Ee Bl0c—/VE
0

so we identify the function f(F) whose saddle point we must seek as
E o
© VE

Setting the derivative to 0 we find

f(E)=InE —

df 1 1 a

iE-F 6 e



11.

or with

=l°

we have

2

2a
w4+ ut="—>1,
O

whose approximate solution is

202\ 9 [902\'/?
“%<6J _§“<6J -

The second derivative is

3
z_—a<0,

B, 4B

rf
JE?

hence the saddle point is a maximum and lies on the real positive
E—axis. We may therefore replace the integral with

/oo dE e/ F) r ¢f(F0) /oo dBe BB’ Iy [2 — 1/% e/ (F0)
0 —00 0

giving

Apply the Gram-Schmidt orthogonalization method to the monomials
2%, 2!, and 22 to derive the first 3 Hermite polynomials Hy, H,;, and
H,, where these polynomials are orthogonal on the interval (—oo, +00)
with respect to the weight function e~*". Do not bother to normalize

the polynomials.
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Solution:

/_O:o dee ™ H,, (z) H, (z) = {0, m#n

1, m=n "

To evaluate integrals like

Manifestly,
Hy(z) = (m)~'"*
—1/4
Hi(z) = x <E> ,
and we can then find H, by insisting it be orthogonal to Hy and H;:

H, (z) = 2% — Hy () (HU,ZUZ) — Hy () (Hl,ﬁ) —
x? — ()~ /_o:o dse™ ()" s

=1/4 oo ) —1/4
—x (%) /_oo dse s (%) s?
1
N (a2 - _) .
(‘T 2
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12. The Schrdinger equation of the hydrogenic atom is

h? Ze?
—VH - 2y = By
2m r
Estimate the ground state energy using the trial function e .

Solution:
We want to minimize the functional

T d&r (vyr - vy — 22 7))
I & |l ’

E{y} =

with our trial function we have
Ve M = —2\7Fe ™
hence we must minimize (we let 2\ = «)

2 2 2
fOO dr 7”2 h—a2r2 _ Ze e—or
[o2 drr2e—ar
2 2
B —f’g‘ma 12, fm — —223 _ 3h2a B 2262a1/2
1 —3/2 - )
1 ™ / 4m \/7_T

whose minimum is

472%e*m B

Ernin - -
3rh?

8
— (—) Z’Ry ~ —0.85Z°Ry .
3m

13. Solve the integral equation

00 e 1
/_ooe' () dy = ——

Solution:
This is a difference kernel on an infinite interval. Hence we can apply
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the convolution theorem for Fourier transforms. Defining the Fourier
transform as

F(f)= [ e f(a)dn

— 00

we have

Hence
) ik
—00 IL’2 + 1
* ikx —|z| 2
dr = ——
/_oo R * I |

v
_h —|k 2
F() = 3e (K +1)
and we can see easily that the inverse transform gives
f(z) = 1 /OO dk e~ikw Z eIk (k2 + 1)
21 J -0 2

I Y k(12
= 5/0 dk cos (kx)e (k +1)

_ & I | L 262
T2 de? ) 22 +1 " 2(22+1) (22 +1)°

14. Consider the operator defined by the kernel

1

Koy = o
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(a) Show that it is Hermitian.

(/d:vdyso*(fv)K(rﬂ,y)sO(y))T = /d:vdyw(w)K*(w,y)w*(y)
= /dxdygo(y)K(y,x)so*(fr)

_ /dxdygo* () K (y,2) ¢ (y)

That is, its diagonal matrix elements in any basis are real.

(b) Show that it represents a positive-definite operator.

/ dz e ¢ (z)

2

[dwdy e @) K (@) o) = [ dse >0

(c) Show it is bounded.
By the secret theorem (p. 284ff)

= [yl @)lo ).

o ()
Let us take the interval to be (—oo, +00) and let o(x) = 1. Then

I5]] < sup

1 m
————— =su
2+y?+1 e x2+1
(d) Show that it is compact.

The Schmidt norm is defined by

00 00 1 2 00 1 2
K=" ar [ ay () =7 [ d ( ) —
|| ||S oo X S y<x2+y2+1> T 0 u u+1 T

Since this is finite, the kernel is compact.

=T

IKIl < sup [~ dy

(e) Show that its eigenvalue spectrum is countably infinite.
Compact kernels have a countable spectrum that accumulates only
at 0.
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15. Evaluate the integral
AQ—d/ddp (A2 +p2)_1 _ A2_dQ (d)/ dppd—l (A2 +p2)—1 .
0

Solution:
Following the hint we evaluate the angular factor € (d):

_ Jdpp* e 3U(d)2)

Q(d —

@ (122 dpe‘l’z)d ()"

2-d [ d 2 2\ _ I'(d/2) 2-d A d—2
we [t (a7 447) 7 T gy

The singularity at d = 4 is a simple pole.
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