## PHYS 725 HW \#5. Due 6 December 2001

1. Riley 15.8

## Solution:

Problem was to find eigenvalues and eigenfunctions of

$$
L y \stackrel{d f}{=} x^{2} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}+\frac{1}{4} y=\lambda y .
$$

Substitute $y=e^{t}$ and get

$$
\ddot{y}+\dot{y}+\frac{1}{4} y=\lambda y .
$$

Now eliminate the first derivative term with the substitution $y=e^{-t / 2} v$ to get

$$
\ddot{v}=\lambda v
$$

subject to $v(0)=v(1)=0$. Hence

$$
v(t)=\sin (n \pi t)
$$

and

$$
\lambda=-n^{2} \pi^{2} .
$$

Therefore

$$
y_{n}(x)=x^{-\frac{1}{2}} \sin (n \pi \ln x) .
$$

To express the solution of

$$
L y=x^{-1 / 2}
$$

we expand $y(x)$ in the (complete set of) eigenfunctions of $L$ :

$$
y(x)=\sum_{n=1}^{\infty} c_{n} y_{n}(x)
$$

then

$$
-\sum_{n=1}^{\infty} c_{n} n^{2} \pi^{2} y_{n}(x)=x^{-1 / 2} .
$$

Multiplying both sides by $y_{n}(x)$ and integrating from $x=1$ to $x=e$ we get (after changing variables to $t=\ln x$ )

$$
-c_{n} n^{2} \pi^{2} \int_{0}^{1} d t \sin ^{2}(n \pi t)=\int_{0}^{1} d t \sin (n \pi t)
$$

or

$$
c_{n}=\frac{-2}{n^{3} \pi^{3}}\left[1-(-1)^{n}\right] .
$$

2. Riley 15.9

## Solution:

In physicists' units we have

$$
\nabla^{2} \varphi=-4 \pi \rho(\vec{x})
$$

This is most easily done by Fourier transform, although we could also solve the equation

$$
\nabla^{2} G=\delta(\vec{x})
$$

To find the Green's function directly, note that

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial G}{\partial r}\right)=\frac{A}{r^{2}} \delta(r)
$$

(the form of the above follows from the fact that the volume element in spherical polar coordinates is $d^{3} r=r^{2} \sin \theta d r d \theta d \phi$ ); then

$$
\frac{\partial G}{\partial r}=\frac{A}{r^{2}}
$$

and

$$
G=-\frac{A}{r}=-\frac{1}{4 \pi r} .
$$

To do it by Fourier transform, we multiply the equation

$$
\nabla^{2} \varphi=-4 \pi \rho(\vec{x})
$$

by $\exp (i \vec{k} \cdot \vec{r})$ and integrate over all space:

$$
\int d^{3} r e^{i \vec{k} \cdot \vec{r}} \nabla^{2} \varphi(\vec{r})=-4 \pi \int d^{3} r e^{i \vec{k} \cdot \vec{r}} \rho(\vec{r})
$$

Then, manifestly,

$$
\varphi(\vec{r})=4 \pi \int d^{3} r^{\prime} \rho\left(\vec{r}^{\prime}\right) \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{k^{2}} e^{i \vec{k} \cdot\left(\vec{r}^{\prime}-\vec{r}\right)}
$$

where we have interchanged the orders of integration. Performing the integral over $\vec{k}$ we have

$$
\varphi(\vec{r})=\int d^{3} r^{\prime} \frac{\rho\left(\vec{r}^{\prime}\right)}{\left|\vec{r}^{\prime}-\vec{r}\right|} \frac{2}{\pi} \int_{0}^{\infty} \frac{d k}{k} \sin \left(k\left|\vec{r}^{\prime}-\vec{r}\right|\right) \equiv \int d^{3} r^{\prime} \frac{\rho\left(\vec{r}^{\prime}\right)}{\left|\vec{r}^{\prime}-\vec{r}\right|}
$$

## 3. Riley 15.10

## Solution:

This one was essentially done in class: we want the outgoing-wave solution of

$$
\left(-\nabla^{2}-K^{2}\right) \Psi(\vec{r})=F(\vec{r}) .
$$

We Fourier transform and eventually must perform the integral

$$
\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{e^{i \vec{k} \cdot \vec{s}}}{k^{2}-K^{2}-i \varepsilon}=\frac{1}{4 \pi^{2} i s} \int_{-\infty}^{\infty} d k k \frac{e^{i k s}}{k^{2}-K^{2}-i \varepsilon} .
$$

In the limit as $\varepsilon \rightarrow 0$ we have

$$
\frac{e^{i k s}}{4 \pi s}
$$

or in other words,

$$
\Psi(\vec{r})=\int d^{3} r^{\prime} \frac{F\left(\vec{r}^{\prime}\right) e^{i k\left|\vec{r}-\vec{r}^{\prime}\right|}}{4 \pi\left|\vec{r}-\vec{r}^{\prime}\right|} .
$$

4. Riley 21.1

## Solution:

We were to solve the equation

$$
\int_{0}^{\infty} d v \cos (u v) y(v)=\exp \left(-u^{2} / 2\right)
$$

We notice that

$$
\int_{0}^{\infty} d v \cos (u v) y(v)=\frac{1}{2} \int_{-\infty}^{\infty} d v e^{i u v}[y(v) \theta(v)+y(-v) \theta(-v)]
$$

so we can solve for the unknown function

$$
h(v) \stackrel{d f}{=} y(v) \theta(v)+y(-v) \theta(-v)
$$

by Fourier-transforming both sides. Thus

$$
h(v)=\sqrt{\frac{4}{\pi}} \exp \left(-v^{2} / 2\right)
$$

which is the solution for $v>0$.
5. Riley 21.2

## Solution:

We recognize

$$
\int_{0}^{\infty} f(x) e^{-s x} d x=\frac{a}{a^{2}+s^{2}}
$$

as a Laplace transform - therefore we inverse transform (or use a table of inverse Laplace transforms) to find

$$
f(x)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} d s e^{s x} \frac{a}{a^{2}+s^{2}}=\sin a x .
$$

6. Riley 21.3

## Solution:

We want to solve the Volterra equation

$$
f(x)=e^{x}+\int_{0}^{x}(x-y) f(y) d x
$$

Differentiate twice with respect to $x$ to obtain

$$
\frac{d^{2} f}{d x^{2}}-f=e^{x}
$$

subject to initial conditions $f(0)=f^{\prime}(0)=1$. Laplace transform to solve:

$$
\left(s^{2}-1\right) \tilde{f}(s)=\frac{1}{s-1}+s f(0)+f^{\prime}(0)=\frac{s^{2}}{s-1}
$$

or

$$
\begin{aligned}
f(x) & =\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} d s \frac{s^{2} e^{s x}}{(s+1)(s-1)^{2}} \\
& \equiv e^{x} \frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} d s \frac{(s+1)^{2} e^{s x}}{(s+2) s^{2}} \\
& =\frac{e^{-x}}{4}+e^{x}\left(\frac{3}{4}+\frac{x}{2}\right) .
\end{aligned}
$$

Note we could also have Laplace transformed the integral equation and used the convolution theorem, since it has a difference kernel.
7. Riley 21.5

## Solution:

Expand $\psi=\sum_{n} a_{n} h_{n}$ and substitute:

$$
\sum_{n} a_{n} h_{n}=\lambda \sum_{n} h_{n}\left(g_{n}, \psi\right) \equiv \lambda \sum_{n} \sum_{m} h_{n}\left(g_{n}, h_{m}\right) a_{m}
$$

or

$$
a_{n}=\lambda \sum_{m} M_{n m} a_{m} .
$$

Therefore the eigenvalues are given by $\operatorname{det}[I-\lambda M]=0$ which is the same thing as $\operatorname{det}\left[\lambda^{-1} I-M\right]=0$. The coefficients $a_{n}$ are the components of the corresponding eigenvector in discrete representation.
Applying this to

$$
\psi(x)=\lambda \int_{0}^{2 \pi} d y K(x, y) \psi(y)
$$

where

$$
K(x, y)=\sum_{n=1}^{\infty} \frac{1}{n} \cos (n x) \cos (n y)
$$

we have

$$
a_{n} \stackrel{d f}{=} \int_{0}^{2 \pi} d x \psi(x) \cos (n x)=\frac{\pi \lambda}{n} a_{n} .
$$

Therefore the eigenvalues are $\lambda=n / \pi$ and the eigenfunctions are $\cos (n x)$.
8. Riley 21.8

## Solution:

We are to solve

$$
f(x)=x^{2}+2 \int_{0}^{1}(x+y) e^{x-y} f(y) d y
$$

by the Fredholm method. The kernel $(x+y) \exp (x-y)$ is separable so we do not really need Fredholm theory. However, let us compute the Fredholm resolvent. From Riley, et al. we use the recursion relations

$$
\begin{aligned}
d_{n} & =\operatorname{Tr} D_{n-1} \\
D_{n}(x, y) & =K(x, y) d_{n}-\int d z K(x, z) D_{n-1}(z, y)
\end{aligned}
$$

to compute the coefficients

$$
\begin{array}{ll}
d_{0}=1 & D_{0}(x, y)=(x+y) e^{x-y} \\
d_{1}=\operatorname{Tr} D_{0}=\int_{0}^{1} 2 x d x=1 & D_{1}=e^{x-y}\left(\frac{x}{2}+\frac{y}{2}-x y-\frac{1}{3}\right) \\
d_{2}=\operatorname{Tr} D_{1}=\frac{-1}{6} & D_{2}=0
\end{array}
$$

The resolvent is therefore

$$
R(x, y)=e^{x-y}\left[\frac{x+y-\lambda\left(\frac{x}{2}+\frac{y}{2}-x y-\frac{1}{3}\right)}{1-\lambda-\lambda^{2} / 12}\right]
$$

To solve the equation we set $\lambda=2$ and thus get

$$
f(x)=x^{2}-e^{x}\left(3 x I_{3}+I_{2}\right),
$$

where

$$
I_{n}=\int_{0}^{1} x^{n} e^{-x} d x
$$

9. What is the differential equation satisfied by

$$
y(x)=x^{\alpha} J_{ \pm m}\left(\beta x^{\gamma}\right) ?
$$

Use this result to find the eigenvalues of the swinging chain. (This is a uniform suspended chain whose lower end is free - thus the restoring force is gravitational. The horizontal displacement of a point along the chain obeys a linear, second-order pde that we discussed in class:

$$
\frac{\partial^{2} \Psi}{\partial t^{2}}=g \frac{\partial \Psi}{\partial x}+g x \frac{\partial^{2} \Psi}{\partial x^{2}}
$$

where $x=0$ is the lower-free-end of the chain and $x=L$ is the upper end.)

Solution: To find the differential equation satisfied by

$$
y(x)=x^{\alpha} J_{ \pm m}\left(\beta x^{\gamma}\right)
$$

we let $u=x^{\gamma}$ so that

$$
J_{ \pm m}(\beta u)=u^{-\alpha / \gamma} y\left(u^{1 / \gamma}\right) .
$$

Since

$$
u^{2} \frac{d^{2} J}{d u^{2}}+u \frac{d J}{d u}+\left(\beta^{2} u^{2}-m^{2}\right) J=0
$$

we see that

$$
\frac{u^{2 / \gamma}}{\gamma^{2}} \frac{d^{2} y}{d x^{2}}+\frac{u^{1 / \gamma}}{\gamma}\left(\frac{1}{\gamma}-\frac{2 \alpha}{\gamma}\right) \frac{d y}{d x}+\left(\beta^{2} u^{2}+\frac{\alpha^{2}}{\gamma^{2}}-m^{2}\right) y=0
$$

which may be rewritten

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x(1-2 \alpha) \frac{d y}{d x}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}+\alpha^{2}-m^{2} \gamma^{2}\right) y=0 .
$$

To solve the pde we let $\Psi(x, t)=e^{i \omega t} \psi(x)$ giving

$$
x \frac{d^{2} \psi}{d x^{2}}+\frac{d \psi}{d x}+\frac{\omega^{2}}{g} \psi=0
$$

which has the solution

$$
\psi(x)=A J_{0}(2 \omega \sqrt{x / g})
$$

Since $\psi(x=L)=0$ the eigenvalues $\omega$ must be given by the roots of

$$
J_{0}(2 \omega \sqrt{L / g})=0
$$

the smallest of these is $2.4048 \ldots$ so the smallest value of $\omega$ is

$$
1.20241 \ldots \times \sqrt{g / L}
$$

10. Energy in a star is produced in nuclear reactions initiated by collisions. If the number of collisions per unit time, of particles with CM kinetic energy between $E$ and $E+d E$ is $N E e^{-E / \Theta}$ where $\Theta=k_{B} T$ is the absolute temperature in energy units and $N$ is a constant; and if the probability that a collision will result in a reaction is $M e^{-\alpha / \sqrt{E}}$ (again $M$ and $\alpha$ are constants), use the method of steepest descents to estimate the rate of nuclear reactions, assuming

$$
\left(\Theta / \alpha^{2}\right)^{1 / 6} \ll 1
$$

## Solution:

The reaction rate is

$$
\frac{d n}{d t}=M N \int_{0}^{\infty} d E E e^{-E / \Theta} e^{-\alpha / \sqrt{E}}
$$

so we identify the function $f(E)$ whose saddle point we must seek as

$$
f(E)=\ln E-\frac{E}{\Theta}-\frac{\alpha}{\sqrt{E}}
$$

Setting the derivative to 0 we find

$$
\frac{d f}{d E}=\frac{1}{E}-\frac{1}{\Theta}+\frac{\alpha}{2 E^{3 / 2}}=0
$$

or with

$$
u=\frac{\alpha}{\sqrt{E}}
$$

we have

$$
2 u^{2}+u^{3}=\frac{2 \alpha^{2}}{\Theta} \gg 1
$$

whose approximate solution is

$$
u \approx\left(\frac{2 \alpha^{2}}{\Theta}\right)^{1 / 3}-\frac{2}{3} \approx\left(\frac{2 \alpha^{2}}{\Theta}\right)^{1 / 3}
$$

The second derivative is

$$
\left.\frac{d^{2} f}{d E^{2}}\right|_{E=E_{0}} \approx-\frac{3 \alpha}{4 E_{0}^{5 / 2}}<0
$$

hence the saddle point is a maximum and lies on the real positive $E$-axis. We may therefore replace the integral with

$$
\int_{0}^{\infty} d E e^{f(E)} \approx e^{f\left(E_{0}\right)} \int_{-\infty}^{\infty} d E e^{\left(E-E_{0}\right)^{2} f_{0}^{\prime \prime} / 2}=\sqrt{\frac{2 \pi}{\left|f_{0}^{\prime \prime}\right|}} e^{f\left(E_{0}\right)}
$$

giving

$$
\frac{d n}{d t} \approx M N \alpha \sqrt{\frac{\pi \Theta^{3}}{3}} \exp \left[-\frac{3}{2}\left(\frac{2 \alpha^{2}}{\Theta}\right)^{1 / 3}\right]
$$

11. Apply the Gram-Schmidt orthogonalization method to the monomials $x^{0}, x^{1}$, and $x^{2}$ to derive the first 3 Hermite polynomials $H_{0}, H_{1}$, and $H_{2}$, where these polynomials are orthogonal on the interval $(-\infty,+\infty)$ with respect to the weight function $e^{-x^{2}}$. Do not bother to normalize the polynomials.

## Solution:

$$
\int_{-\infty}^{\infty} d x e^{-x^{2}} H_{m}(x) H_{n}(x)=\left\{\begin{array}{ll}
0, & m \neq n \\
1, & m=n
\end{array} .\right.
$$

To evaluate integrals like

$$
I_{k}(\lambda)=\int_{-\infty}^{\infty} d x x^{2 k} e^{-\lambda x^{2}}
$$

we note that

$$
\begin{aligned}
I_{0}(\lambda) & =\sqrt{\frac{\pi}{\lambda}} \\
I_{1}(\lambda) & =-\frac{d I_{0}(\lambda)}{d \lambda}=\frac{1}{2} \sqrt{\frac{\pi}{\lambda^{3}}} \\
& \ldots
\end{aligned}
$$

Manifestly,

$$
\begin{aligned}
& H_{0}(x)=(\pi)^{-1 / 4} \\
& H_{1}(x)=x\left(\frac{\pi}{4}\right)^{-1 / 4}
\end{aligned}
$$

and we can then find $H_{2}$ by insisting it be orthogonal to $H_{0}$ and $H_{1}$ :

$$
\begin{aligned}
& H_{2}(x)=x^{2}-H_{0}(x)\left(H_{0}, x^{2}\right)-H_{1}(x)\left(H_{1}, x^{2}\right)= \\
& \quad x^{2}-(\pi)^{-1 / 4} \int_{-\infty}^{\infty} d s e^{-s^{2}}(\pi)^{-1 / 4} s^{2} \\
& \quad-x\left(\frac{\pi}{4}\right)^{-1 / 4} \int_{-\infty}^{\infty} d s e^{-s^{2}} s\left(\frac{\pi}{4}\right)^{-1 / 4} s^{2} \\
& \quad N\left(x^{2}-\frac{1}{2}\right) .
\end{aligned}
$$

12. The Schrdinger equation of the hydrogenic atom is

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi-\frac{Z e^{2}}{r} \psi=E \psi .
$$

Estimate the ground state energy using the trial function $e^{-\lambda r^{2}}$.

## Solution:

We want to minimize the functional

$$
E\{\psi\}=\frac{\iiint d^{3} r\left(\frac{\hbar^{2}}{2 m} \nabla \psi^{*} \cdot \nabla \psi-\frac{Z e^{2}}{r}|\psi|^{2}\right)}{\iiint d^{3} r|\psi|^{2}} ;
$$

with our trial function we have

$$
\nabla e^{-\lambda r^{2}}=-2 \lambda \vec{r} e^{-\lambda r^{2}}
$$

hence we must minimize (we let $2 \lambda=\alpha$ )

$$
\begin{aligned}
E(\alpha) & =\frac{\int_{0}^{\infty} d r r^{2}\left(\frac{\hbar^{2}}{2 m} \alpha^{2} r^{2}-\frac{Z e^{2}}{r}\right) e^{-\alpha r^{2}}}{\int_{0}^{\infty} d r r^{2} e^{-\alpha r^{2}}} \\
& =\frac{\frac{3 \hbar^{2}}{16 m} \alpha^{-1 / 2} \sqrt{\pi}-\frac{Z e^{2}}{2 \alpha}}{\frac{1}{4} \sqrt{\pi} \alpha^{-3 / 2}}=\frac{3 \hbar^{2}}{4 m} \alpha-\frac{2 Z e^{2}}{\sqrt{\pi}} \alpha^{1 / 2},
\end{aligned}
$$

whose minimum is

$$
E_{\min }=-\frac{4 Z^{2} e^{4} m}{3 \pi \hbar^{2}}=-\left(\frac{8}{3 \pi}\right) Z^{2} \mathrm{Ry} \approx-0.85 Z^{2} \mathrm{Ry}
$$

13. Solve the integral equation

$$
\int_{-\infty}^{\infty} e^{-|x-y|} f(y) d y=\frac{1}{x^{2}+1}
$$

## Solution:

This is a difference kernel on an infinite interval. Hence we can apply
the convolution theorem for Fourier transforms. Defining the Fourier transform as

$$
\mathcal{F}(f)=\int_{-\infty}^{\infty} e^{i k x} f(x) d x
$$

we have

$$
\mathcal{F}\left(\int_{-\infty}^{\infty} e^{-|x-y|} f(y) d y\right) \equiv \mathcal{F}(K \odot f)=\mathcal{F}(K) \mathcal{F}(f)
$$

Hence

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{e^{i k x}}{x^{2}+1} d x & =\pi e^{-|k|} \\
\int_{-\infty}^{\infty} e^{i k x} e^{-|x|} d x & =\frac{2}{k^{2}+1} \\
\mathcal{F}(f) & =\frac{\pi}{2} e^{-|k|}\left(k^{2}+1\right)
\end{aligned}
$$

and we can see easily that the inverse transform gives

$$
\begin{aligned}
f(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} d k e^{-i k x} \frac{\pi}{2} e^{-|k|}\left(k^{2}+1\right) \\
& =\frac{1}{2} \int_{0}^{\infty} d k \cos (k x) e^{-k}\left(k^{2}+1\right) \\
& =\frac{1}{2}\left(1-\frac{d^{2}}{d x^{2}}\right) \frac{1}{x^{2}+1}=\frac{1}{2\left(x^{2}+1\right)}\left(1+\frac{2-6 x^{2}}{\left(x^{2}+1\right)^{2}}\right)
\end{aligned}
$$

14. Consider the operator defined by the kernel

$$
K(x, y)=\frac{1}{x^{2}+y^{2}+1}
$$

(a) Show that it is Hermitian.

$$
\begin{aligned}
\left(\int d x d y \varphi^{*}(x) K(x, y) \varphi(y)\right)^{\dagger} & =\int d x d y \varphi(x) K^{*}(x, y) \varphi^{*}(y) \\
& \equiv \int d x d y \varphi(y) K(y, x) \varphi^{*}(x) \\
& =\int d x d y \varphi^{*}(x) K(y, x) \varphi(y)
\end{aligned}
$$

That is, its diagonal matrix elements in any basis are real.
(b) Show that it represents a positive-definite operator.

$$
\int d x d y \varphi^{*}(x) K(x, y) \varphi(y)=\int_{0}^{\infty} d s e^{-s}\left|\int d x e^{-s x^{2}} \varphi(x)\right|^{2}>0
$$

(c) Show it is bounded.

By the secret theorem (p. 284ff)

$$
\|K\| \leq \sup _{x} \frac{1}{\sigma(x)} \int d y|K(x, y)| \sigma(y) .
$$

Let us take the interval to be $(-\infty,+\infty)$ and let $\sigma(x)=1$. Then

$$
\|K\| \leq \sup _{x} \int_{-\infty}^{\infty} d y \frac{1}{x^{2}+y^{2}+1}=\sup _{x} \frac{\pi}{\sqrt{x^{2}+1}}=\pi
$$

(d) Show that it is compact.

The Schmidt norm is defined by

$$
\|K\|_{S}^{2}=\int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d y\left(\frac{1}{x^{2}+y^{2}+1}\right)^{2}=\pi \int_{0}^{\infty} d u\left(\frac{1}{u+1}\right)^{2}=\pi
$$

Since this is finite, the kernel is compact.
(e) Show that its eigenvalue spectrum is countably infinite.

Compact kernels have a countable spectrum that accumulates only at 0 .
15. Evaluate the integral

$$
\Lambda^{2-d} \int d^{d} p\left(\Delta^{2}+p^{2}\right)^{-1}=\Lambda^{2-d} \Omega(d) \int_{0}^{\infty} d p p^{d-1}\left(\Delta^{2}+p^{2}\right)^{-1} .
$$

## Solution:

Following the hint we evaluate the angular factor $\Omega(d)$ :

$$
\Omega(d)=\frac{\int_{0}^{\infty} d p p^{d-1} e^{-p^{2}}}{\left(\int_{-\infty}^{\infty} d p e^{-p^{2}}\right)^{d}}=\frac{\frac{1}{2} \Gamma(d / 2)}{(\pi)^{d / 2}}
$$

so

$$
\Lambda^{2-d} \int d^{d} p\left(\Delta^{2}+p^{2}\right)^{-1}=\frac{\Gamma(d / 2)}{4(\pi)^{d / 2-1} \sin (\pi d / 2)} \Lambda^{2-d} \Delta^{d-2}
$$

The singularity at $d=4$ is a simple pole.

