PHYS 725 Midterm Examination

This is a pledged take-home exam. Answer all 8 questions. It is open book, and there is no time limit. However it must be turned in Tuesday, November 6,2001 , in class. You might find it valuable, as practice for the final, to study the questions, then try to write the solutions within 3 hours, without further consulting notes or books.

1. Evaluate the integral

$$
\int_{0}^{\infty} d x \frac{\ln x}{1+x^{3}}
$$

in closed form using Cauchy's Theorem. Hint: use the contour shown in the notes for the integral

$$
\int_{0}^{\infty} d x \frac{1}{1+x^{3}}
$$

and ask yourself what function has a discontinuity (across the positive real axis) proportional to $\ln x$.
2. Evaluate the integral

$$
I=\int_{0}^{\infty} d x \frac{\sinh \alpha x}{\sinh \pi x} .
$$

For what (real) range of α is it finite?
3. Evaluate the integral

$$
\int_{0}^{2 \pi} \frac{d \theta}{(a+b \cos \theta)^{2}} .
$$

Hint: find a way to express the above integral in terms of the simpler integral

$$
\int_{0}^{2 \pi} \frac{d \theta}{(a+b \cos \theta)}
$$

4. The Laplace transform of a function $y(x)$ is defined by

$$
\tilde{y}(\lambda) \stackrel{d f}{=} \int_{0}^{\infty} d x y(x) e^{-\lambda x}
$$

assuming the integral is well-defined.
(a) What is the Laplace transform of $D y \stackrel{d f}{=} d y / d x$, the first derivative of y ?
(b) Laplace transform the differential equation

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=x e^{-2 x}
$$

and thereby determine \tilde{y} in terms of $y(0)$ and $y^{\prime}(0)$.
(c) The inverse Laplace transform of a function (which gives back the original function when its Laplace transform is known) is defined by

$$
y(x)=\int_{\gamma-i \infty}^{\gamma+i \infty} d \lambda \tilde{y}(\lambda) e^{\lambda x}
$$

where $\gamma>0$. Use this to determine the solution of the above differential equation when $y(0)=0$ and $y^{\prime}(0)=1$.
5. Evaluate the sum

$$
S=\sum_{n=1}^{\infty} \frac{1}{n^{4}+n^{2}}
$$

by contour integration.
6. Characterize the location(s) and type(s) of the singularities of each of the following functions
(a) $f(z)=3 /\left(z^{2}+z^{4}\right)$.
(b) $f(z)=\sinh (1 / z)$
(c) $f(z)=\int_{1}^{z} \frac{d t}{t}$
(d) $\quad f(z)=\int_{0}^{\infty} d t e^{-t^{3}(1+z)}$.

Hint: a change of integration variable might help!
7. The 0'th order Bessel function has the infinite series expansion

$$
J_{0}(z)=\sum_{n=0}^{\infty} \frac{1}{(n!)^{2}}\left(-z^{2} / 4\right)^{n}
$$

(a) For what values of z does the series converge? (Justify your answer using the convergence tests discussed in class.)
(b) Evaluate the integral

$$
\lim _{R \rightarrow \infty} \oint_{|z|=R} d z z^{2} J_{0}(1 / \sqrt{z}) .
$$

Justify the operations necessary to get your result.
8. Discuss the convergence of the following infinite series (that is, do they converge or diverge, and why).
(a) $\quad \sum_{n=1}^{\infty} \frac{1}{2 n^{1 / 2}}$;
(b) $\quad \sum_{n=2}^{\infty} \frac{(-1)^{n} \sqrt{n^{2}+1}}{n \ln n}$.

