PHYS 725 Midterm Examination

This is a pledged take-home exam. Answer all 8 questions. It is open book, and there is no time limit. However it must be turned in Tuesday, November 6,2001 , in class. You might find it valuable, as practice for the final, to study the questions, then try to write the solutions within 3 hours, without further consulting notes or books.

1. Evaluate the integral

$$
\int_{0}^{\infty} d x \frac{\ln x}{1+x^{3}}
$$

in closed form using Cauchy's Theorem. Hint: use the contour shown in the notes for the integral

$$
J=\int_{0}^{\infty} d x \frac{1}{1+x^{3}},
$$

and ask yourself what function has a discontinuity (across the positive real axis) proportional to $\ln x$.

Solution:

$$
\begin{aligned}
\oint d z \frac{\ln ^{2} z}{1+z^{3}} & =\int_{0}^{\infty} d x \frac{\ln ^{2} x}{1+x^{3}}+\int_{\infty}^{0} d x \frac{(\ln x+2 \pi i)^{2}}{1+x^{3}}+\lim _{R \rightarrow \infty} \mathcal{O}\left(R^{-2} \ln ^{2} R\right) \\
& =2 \pi i \sum \text { residues }
\end{aligned}
$$

We see that

$$
-4 \pi i \int_{0}^{\infty} d x \frac{\ln x}{1+x^{3}}+4 \pi^{2} J=2 \pi i\left[\frac{(i \pi / 3)^{2}}{3 e^{2 \pi i / 3}}+\frac{(i \pi)^{2}}{3 e^{2 \pi i}}+\frac{(5 i \pi / 3)^{2}}{3 e^{10 \pi i / 3}}\right]
$$

giving

$$
\int_{0}^{\infty} d x \frac{\ln x}{1+x^{3}}=-\frac{2 \pi^{2}}{27} .
$$

The fact that the integral is negative can be verified by noting that

$$
\int_{0}^{\infty} d x \frac{\ln x}{1+x^{3}} \equiv \int_{0}^{1} d x \frac{1-x}{1+x^{3}} \ln x<0 .
$$

2. Evaluate the integral

$$
I=\int_{0}^{\infty} d x \frac{\sinh \alpha x}{\sinh \pi x} .
$$

For what (real) range of α is it finite?
Solution: The integral is only well-defined for $|\operatorname{Re}(\alpha)|<\pi$. We have

$$
I=\int_{0}^{\infty} d x \frac{\sinh \alpha x}{\sinh \pi x}=\frac{1}{2} \int_{-\infty}^{\infty} d x \frac{\sinh \alpha x}{\sinh \pi x}
$$

which we can evaluate by considering the contour integral

$$
\oint d z \frac{\sinh \alpha z}{\sinh \pi z}
$$

around the rectangular contour whose corners are $-L+i 0, L+i 0, L+2 i$, $-L+2 i$ in the limit $L \rightarrow \infty$. There are simple poles at $z=i$ and $z=2 i$. The former is included within the contour, whereas the latter is avoided by a semicircle of radius ε running from $\theta=2 \pi$ to $\theta=\pi$. The result is (noting the contributions from the sides at $x= \pm L$ vanish in the limit $L \rightarrow \infty$)

$$
2 I(1-\cos 2 \alpha)-i \sin 2 \alpha \mathcal{P} \int_{-\infty}^{\infty} d x \frac{\cosh \alpha z}{\sinh \pi z}=2 \sin \alpha-\sin 2 \alpha
$$

or

$$
I=\frac{\sin \alpha(1-\cos \alpha)}{1-\cos 2 \alpha} \equiv \frac{1}{2} \tan (\alpha / 2)
$$

3. Evaluate the integral

$$
\int_{0}^{2 \pi} \frac{d \theta}{(a+b \cos \theta)^{2}}
$$

Hint: find a way to express the above integral in terms of the simpler integral

$$
\int_{0}^{2 \pi} \frac{d \theta}{(a+b \cos \theta)} .
$$

Solution: The integral we are looking for can be evaluated in terms of a simpler one:

$$
\int_{0}^{2 \pi} \frac{d \theta}{(a+b \cos \theta)^{2}} \equiv-\frac{d}{d a} \int_{0}^{2 \pi} \frac{d \theta}{a+b \cos \theta}=\frac{d}{d a} \oint_{|z|=1} \frac{2 i d z}{b z^{2}+2 a z+b} .
$$

Clearly we must have $|a|>|b|$ or the integral will not be well-defined. For $a>0$ the result is

$$
\frac{2 \pi}{\sqrt{a^{2}-b^{2}}}
$$

whereas it changes sign for $a<0$. Thus the integral we are to evaluate is

$$
\int_{0}^{2 \pi} \frac{d \theta}{(a+b \cos \theta)^{2}}=\frac{2 \pi|a|}{\left(a^{2}-b^{2}\right)^{3 / 2}}
$$

that is, it is positive (as it should be) for real a and b.
4. The Laplace transform of a function $y(x)$ is defined by

$$
\tilde{y}(\lambda) \stackrel{d f}{=} \int_{0}^{\infty} d x y(x) e^{-\lambda x},
$$

assuming the integral is well-defined.
(a) What is the Laplace transform of $D y \stackrel{d f}{=} d y / d x$, the first derivative of y ?

Solution:

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =\int_{0}^{\infty} d x y^{\prime}(x) e^{-\lambda x}=\left.y(x) e^{-\lambda x}\right|_{0} ^{\infty}+\lambda \int_{0}^{\infty} d x y(x) e^{-\lambda x} \\
& =\lambda \tilde{y}(\lambda)-y_{0}
\end{aligned}
$$

(b) Laplace transform the differential equation

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=x e^{-2 x}
$$

and thereby determine \tilde{y} in terms of $y(0)$ and $y^{\prime}(0)$.

Solution: The Laplace transform of $x e^{-2 x}$ is $(2+\lambda)^{-2}$. Applying the Laplace transform twice to $y^{\prime \prime}$ gives

$$
(\lambda+1)^{2} \tilde{y}=\frac{1}{(\lambda+2)^{2}}+(\lambda+2) y_{0}+y_{0}^{\prime}
$$

or

$$
\tilde{y}=\frac{1}{(\lambda+1)^{2}}\left[\frac{1}{(\lambda+2)^{2}}+(\lambda+2) y_{0}+y_{0}^{\prime}\right] .
$$

(c) The inverse Laplace transform of a function (which gives back the original function when its Laplace transform is known) is defined by

$$
y(x)=\int_{\gamma-i \infty}^{\gamma+i \infty} d \lambda \tilde{y}(\lambda) e^{\lambda x}
$$

where $\gamma>0$. Use this to determine the solution of the above differential equation when $y(0)=0$ and $y^{\prime}(0)=1$.
Solution: We can calculate the inverse Laplace transform of the above function by contour integration [complete a closed contour by adding a large semicircle in the left half of the complex planemanifestly the integral will vanish on this semicircle at least as fast as R^{-1} (by Jordan's Lemma), so it only adds a convenient form of 0 to the integral we need to evaluate]. Since the only singularities are poles at $\lambda=-2$ and $\lambda=-1$, we may use the residue theorem. Or we may note that the inverse transform of a simple pole, $(\lambda+a)^{-1}$ is $e^{-a x}$ and that of a double pole is $x e^{-a x}$. The function

$$
\tilde{y}=\frac{1}{(\lambda+1)^{2}}\left[\frac{1}{(\lambda+2)^{2}}+(\lambda+2) y_{0}+y_{0}^{\prime}\right]
$$

can be rewritten in the form

$$
\frac{A}{(\lambda+1)^{2}}+\frac{B}{\lambda+1}+\frac{C}{(\lambda+2)^{2}}+\frac{D}{\lambda+2}
$$

where a little reflection reveals $A=1+y_{0}+y_{0}^{\prime}, B=y_{0}-2, C=1$ and $D=2$.
5. Evaluate the sum

$$
S=\sum_{n=1}^{\infty} \frac{1}{n^{4}+n^{2}}
$$

by contour integration.
Solution: We consider the integral around the circle $|z|=N+\frac{1}{2}$ where N is a positive integer, of the function

$$
\frac{\pi \cot (\pi z)}{z^{2}\left(1+z^{2}\right)}
$$

The integral clearly vanishes like N^{-3} for large N. Since the function $\pi \cot (\pi z)$ has simple poles of residue 1 at the positive and negative integers (and also at $z=0$), and since the function $\left[z^{2}\left(1+z^{2}\right)\right]^{-1}$ has poles at $z=0$ and $z= \pm i$, we obtain

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{1}{2 \pi i} \oint_{|z|=N+\frac{1}{2}} \frac{\pi \cot (\pi z)}{z^{2}\left(1+z^{2}\right)} d z & =2 \sum_{n=1}^{\infty} \frac{1}{n^{2}\left(1+n^{2}\right)} \\
& +\operatorname{res}(0)+\operatorname{res}(i)+\operatorname{res}(-i)=0 .
\end{aligned}
$$

Hence we see that

$$
\sum_{1}^{\infty} \frac{1}{n^{2}\left(1+n^{2}\right)}=\frac{1}{2}+\frac{\pi^{2}}{6}-\frac{\pi}{2} \operatorname{coth} \pi .
$$

6. Characterize the location(s) and type(s) of the singularities of each of the following functions
(a) $f(z)=3 /\left(z^{2}+z^{4}\right)$.

Solution: Double pole at $z=0$, simple poles at $z= \pm i$.
(b) $f(z)=\sinh (1 / z)$

Solution: The Laurent series about $z=0$ is non-terminating. It is also convergent for any value of $z \neq 0$. Hence this is an isolated essential singularity at $z=0$.
(c) $f(z)=\int_{1}^{z} \frac{d t}{t}$

Solution: The integral is just $\ln z$ hence the singularity is a branch point at $z=0$. The complex plane must be cut from $z=0$ to ∞ to obtain a single-valued function.
(d)

$$
f(z)=\int_{0}^{\infty} d t e^{-t^{3}(1+z)}
$$

Hint: a change of integration variable might help!
Solution: If we change to $u=t \sqrt[3]{1+z}$ the integral becomes

$$
\frac{1}{\sqrt[3]{1+z}} \int_{0}^{\infty} d u e^{-u^{3}}=\frac{\text { constant }}{\sqrt[3]{1+z}}
$$

Thus the function has a branch point at $z=-1$.
7. The 0 'th order Bessel function has the infinite series expansion

$$
J_{0}(z)=\sum_{n=0}^{\infty} \frac{1}{(n!)^{2}}\left(-z^{2} / 4\right)^{n}
$$

(a) For what values of z does the series converge? (Justify your answer using the convergence tests discussed in class.)
Solution: Clearly the series is absolutely convergent for any $|z|<\infty$. We can use the ratio or root test to verify this. Or alternatively, the radius of convergence is

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\lim _{n \rightarrow \infty}\left(\frac{(n+1)!}{n!}\right)^{2}=\lim _{n \rightarrow \infty}(n+1)^{2}=\infty .
$$

(b) Evaluate the integral

$$
\lim _{R \rightarrow \infty} \oint_{|z|=R} d z z^{2} J_{0}(1 / \sqrt{z}) .
$$

Justify the operations necessary to get your result.
Solution: Since $J_{0}(w)$ is actually a function of $w^{2}, J_{0}(1 / \sqrt{z})$ has no branch cut. It is therefore an analytic function for all $|z|>0$, and has an isolated essential singularity at $z=0$. If we integrate the series around the contour $|z|=R$ we see that the integral of a given term is bounded above by a constant times R^{3-n}. Therefore there is no problem in integrating the series term by term (because of the infinite radius of convergence!). The terms with $n=0,1$, and 2-proportional respectively to R^{3}, R^{2} and R have coefficients involving the integrals

$$
\int_{0}^{2 \pi} d \theta e^{i(3-n) \theta}=0, \quad n<3
$$

The terms with $n>3$ fall to zero with increasing R so it doesn't matter that their coefficients vanish identically. The only term that survives is the one with $n=3$, for which we get

$$
2 \pi i \frac{(-1)^{3}}{(3!)^{2} 4^{3}}=-\frac{\pi i}{1152}
$$

8. Discuss the convergence of the following infinite series (that is, do they converge or diverge, and why).
(a) $\quad \sum_{n=1}^{\infty} \frac{1}{2 n^{1 / 2}}$;

Solution: Manifestly the series diverges, as the integral test demonstrates. That is, the partial sums diverge as $\mathcal{O}\left(N^{1 / 2}\right)$.
(b)

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n} \sqrt{n^{2}+1}}{n \ln n} .
$$

Solution: We see that

$$
\frac{d}{d n}\left(\frac{\sqrt{1+\frac{1}{n^{2}}}}{\log n}\right)=-\left(\frac{\sqrt{1+\frac{1}{n^{2}}}}{n(\log n)^{2}}+\frac{1}{n^{2} \sqrt{1+n^{2}} \log n}\right)<0
$$

so the terms decrease monotonically in magnitude and alternate in sign. Hence, by Weierstrass's Theorem the series converges, but not absolutely (since the terms decrease only as $(\log n)^{-1}$).

