Physics 751 Homework \#7

Due Friday October 31, 11:00 am.

Note on the P-basis mentioned by Shankar:

In solving the one-dimensional Schrödinger equation, the potential $V(x)$ is usually a more complicated function of x than the kinetic energy is of p. The position and momentum obey the commutation relation $[x, p]=i \hbar$, and the standard approach is to write $p=-i \hbar d / d x$. However, we could equally write $x=i \hbar d / d p$, the commutation relations are satisfied, and writing the Hamiltonian in terms of p and $i \hbar d / d p$ leads to a differential equation whose solution is the p space representation (the Fourier transform) of the usual $\psi(x)$. This is occasionally the best strategy - in particular, for a particle in a linear potential.

Shankar questions: 5.4.2, 5.4.3 (page 175) 7.5.1,2,3,4. (page 218).

