## Physics 751 Homework \#3

Due Friday September 26, 11:00 am.

1. (a) If $U$ and $V$ are unitary, is $U V$ unitary? Prove your result.
(b) If $A$ and $B$ are Hermitian, is $A B$ Hermitian? Prove your result.
2. If $H$ is Hermitian, prove
(a) $U=e^{i H}$ is unitary,
(b) that $\log \operatorname{det} U=i \operatorname{Tr} H$.
3. Find the eigenvalues and eigenvectors of the Pauli matrices

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) .
$$

Write down explicitly the unitary matrix that diagonalizes $\sigma_{x}$. Can these two Hermitian matrices $\sigma_{x}, \sigma_{y}$ be diagonalized simultaneously? Explain.
4. (a) Regarding $U(\theta)=e^{i \frac{i}{2} \theta \sigma_{x}}$ as a function of $\sigma_{x}$, use your result from problem 3 to write down its eigenvectors and eigenvalues.
(b) Find another form for $U$ by expanding the exponential and summing the series to give well-known functions. (We shall be using this result later.)
5. Find the eigenvalues and eigenvectors of

$$
L_{x}=\frac{1}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

and construct the unitary matrix which diagonalizes $L_{x}$.
6. Prove that both the determinant and the trace of a Hermitian matrix are unchanged in a unitary transformation, and hence find simple expressions for them in terms of the eigenvalues. (You may assume $\operatorname{det} A B=\operatorname{det} A \cdot \operatorname{det} B$.)

