## Physics 861 \{ Fall 01 <br> Problem set 1- Due Tuesday, Sep. 11

1. 

A shcroft and Mermin's problem 1, page 25 . This is the notorious $\backslash$ hitchhiker's paradox", which you can look up in books on statistics. On the web, a good reference is http:// keskus.hut. ${ }^{-}$/ opetus/ s38143/ 2000/ luennot/E _lect06.pdf, page 14. For full credit you should answer the question in part (e), what is the probability distribution $\mathrm{p}(\mathrm{T})$.
2.

Consider a wire of length I and cross-sectional area A, with conductivity 3/4given by Drude's formula (at ${ }^{-}$nite!). Show that this wire is equivalent to a circuit containing a resistance $R$ and an inductance $L_{k}$, called the kinetic inductance. Are $R$ and $L_{k}$ in series or in parallel? Find SI values for $R$ and $L_{k}$ when the wire is made of copper, $A=1 \mathrm{~mm}^{2}$ and I = 1 m . Compare $L_{k}$ with the ordinary inductance $L$ of the same wire, assuming it to be the inner conductor of a coaxial cable of cross-sectional area $1 \mathrm{~cm}^{2}$. ( $T$ his will give the right magnitude of $L$ for any reasonable circuit containing the wire.)
3.

A shcroft and Mermin's problem 5, page 27. For part (b), you should produce an accurate plot of ! vs. qc (for positive qand!), using the computer package of your choice. The lower branch of this curve is known as the surface plasmon-polariton. Y ou can look at books, but you should use AM 's notation to show that you did the problem yourself.

Hints. There are 7 unknowns: the four amplitudes A;B;C;D and the three wave vector components $q ; K ; K^{0}$. However, the overall amplitude of the wave is arbitrary, so you will need six equations: two for the ${ }^{-}$eld components in the metal, two for the eld components in vacuum, and two boundary conditions. For the ${ }^{-}$elds, use the divergence equation and the wave equation (if you do this, you will not need to worry about magnetic - elds). For part (a), you do not need to put in the explicit Drude formula for "; just work with a generic " that depends on!.
4.

What is the Hall coe $\pm$ cient of A luminum in a very weak $\mathrm{B}^{-}$eld? Does it agree (in sign and magnitude) with the Drude model for a chemical valence of 3 ? For what value of the Hall angle does $\mathrm{R}_{\mathrm{H}}$ change sign in Al ?

Alternative.
If " is given, at least approximately, by Drude's formula, show that the Fresnel re${ }^{\circ}$ ection coe $\pm$ cient for p-polarized radiation has a pole at the surface plasmon-polariton frequency. Show explicitly for small $1 \approx$ that this pole is in the lower half plane of ! ..W hy, physically, there is no such pole for s-polarization?

Hints. The electric ${ }^{-}$eld is in the plane of incidence for p-polarization (also called vertical polarization). It is perpendicular to the plane of incidence for s-polarization (also called horizontal polarization). You can generalize problem 3 to compute the Fresnel coe $\pm$ cients, or just take them from J ackson and change over to AM notation.

