Physics 861 { Fall 01 Problem set 2 - Due Tuesday, Sep. 18

1.

Problem 1, page 53, of Ashcroft and Mermin.

2.

Solve the Schrädinger equation for an electron in crossed electric and magnetic -elds. Take the magnetic -eld along z and the electric -eld along x. Use the Landau gauge.

3. Two-band formulas

(a) Recall the elementary derivation of the Drude formula for the conductivity, $\frac{3}{4} = ne^{2}i=m$. What if there are several types of charge carriers? Suppose that there are n_{k} carriers of mass m_{k} , charge e_{k} , collision time i_{k} and show that $\frac{3}{4} = -\frac{3}{k}\frac{3}{4}k$, where $\frac{3}{4}k$ is the Drude conductivity when only the carriers of type k are present.

(b) Recall that the Drude theory predicts that the Hall coe±cient is $i_1 = ne [SI]$, or $i_1 = nec [Gauss]$, and the conductivity is unchanged by the application of a magnetic $\bar{}$ eld. Find the Hall coe±cient $R = E_y = j_x B$ when there are two types of carriers.

Your task is to obtain AM's Eq. (12.73), starting from equations like AM's (1.19) for each carrier. It is probably best to introduce $\frac{1}{2}_{k} = 1 = \frac{3}{4}_{k}$ and $\frac{1}{k} = \frac{1}{k} = \frac{1}{$

The experimental constraint of the Hall measurement is that $j_y = 0$, which allows for \counter[°]ow" when there are two or more carrier types. That is why the Hall phenomena are so complex when more than one carrier type is present.

Alternate.

Problem 2, page 53, of Ashcroft and Mermin.