1. Fill in the blanks. A ssuming that $n_{1} ; n_{2} ; n_{3}$ are integers:
${ }^{2}$ The simple cubic lattice points are $\left(n_{1} n_{2} n_{3}\right)$. The primitive unit cell side is 1 . The number of atoms in the cell is
${ }^{2}$ The face centered cubic lattice points are $\left(n_{1} n_{2} n_{3}\right)$ with $n_{1}+n_{2}+n_{3}$ even. The conventional unit cell side is taken to be 2 (for convenience). The number of atoms in the cell is .
${ }^{2}$ The body centered cubic lattice points are $\left(n_{1} n_{2} n_{3}\right)$ with $n_{1} ; n_{2} ; n_{3}$ all even or all odd. The conventional unit cell side is taken to be 2 (for convenience). The number of atoms in the cell is
${ }^{2}$ In the simple cubic lattice the shells are:
\{ h100i with 6 points (nearest neighbors) at distance 1
\{ hl10i with 12 points (second nearest neighbors) at distance ${ }^{\mathrm{p}}{ }_{\overline{2}}$.
\{ hl11i with points at distance
\{ h200i with points at distance
${ }^{2}$ In the fcc the shells are:
\{ h110i with 12 points (nearest neighbors) at distance ${ }^{\mathrm{p}} \overline{2}$.
\{ h200i with points (second nearest neighbors) at distance
\{ h i with points at distance
\{ h i with points at distance
${ }^{2}$ In the bcc the shells are:
\{ hl11i with points (nearest neighbors) at distance ${ }^{\mathrm{p}} \overline{\overline{3}}$
\{ h200i with points (second nearest neighbors) at distance
\{ h i with points at distance
\{ h i with points at distance

2. AM 's problem 5, page 82

3. AM 's problem 1, page 108

You will of course need to work with reciprocal lattices, taking into account also the possible zeros of the structure factor, as in Figure 6.12. The number of points in a shell is not needed for the problem, but can provide additional insight because the di@raction ring will be strong if it comes from a reciprocal lattice shell with many points.

Alternative. AM 's problem 1, page 82

