Physics 861 \{ Fall 01
 Problem set 9 - Due Tuesday, Nov 20

1. Three pulls make a negative pressure.

(a) Consider a uniaxial pull in the x direction on an elastically isotropic solid bar of sides $L_{x} ; L_{y} ; L_{z}$ and show that the fractional volume change (within the elastic range) is

$$
\begin{equation*}
\frac{ \pm V}{V}=(1 ; 2 \underline{o}) \frac{S_{x x}}{E} \tag{1}
\end{equation*}
$$

where E is the Young modulus (also called Y) and \bigcirc is the Poisson ratio (also called $3 / 4$. Similarly, write down expressions for the volume changes caused by uniaxial pulls in the y and z directions.
(b) Replace the bar by a crystal with cubic symmetry. A uniaxial pull along a cubic axis will, again, cause an elongation and a lateral shrinkage. Express the (e®ective) Young modulus and P oisson constant in this case in terms of the conventional elastic constants C_{11} and C_{12}.
(c) Recall that the volume change caused by a hydrostatic pressure p is $\pm \mathrm{V}=\mathrm{V}=$ i $p=B$, where B is the bulk modulus. A rgue that three orthogonal pulls of equal magnitude are equivalent to a negative hydrostatic pressure and obtain the relation $E=3 B(1 ; 20)$.
(d) Using the results of part (b), or more directly, express B in terms of C_{11} and C_{12}.
2.

The general relation of isotropic elasticity is

$$
\begin{equation*}
S_{i j}=B \notin \dagger_{j}+2^{1}{ }^{\mu} E_{i j} i^{\phi^{9}}{ }^{\text {q }}+\mathrm{j} \tag{2}
\end{equation*}
$$

(a) How is the dilation $\$$ related to $(\pm=\mathrm{V})$ of problem 1 and to the strains E_{ij} ?
(b) Consider again a uniaxial pull and show that $E=2^{1}\left(1+\frac{0}{}\right)$:
(c) Consider a pure shear stress acting on a cubic crystal of axes x, y, z.. Find the (e®ective) ${ }^{1}$ if the shear is parallel to a cubic face.
(d) Find the (erective) ${ }^{1}$ if the shear is in the diagonal plane $x=y$.
3.

Problem 3, page 486, of A shcroft - Mermin. For part (c), it is up to you to pick the momentum transfer q in such a way that the experiment will give interesting results. A ssume room temperature.

