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Speci ¢ heat of electrons in metals

Use ¢ = T@s=@T, where s is the entropy per unit volume. Start from
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where g(E) is the density of levels and f is the Fermi function
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Note in passing that s vanishes for T ¥ 0, as it should, because T is either 0 or 1 in that limit. All the
speci ¢ heats are the same to leading order in T; it is easiest to compute the speci ¢ heat at constant  and

V. Then we need
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This formula is still exact. Now note that
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is strongly peaked at E = 1 when kgT ¢ 2. Then, in this limit,
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The exact value of the integral is %?=3. At low T, one can replace g(%) with g(Eg), where Eg is the value
of tat T =0. Then ¢ =°T (at constant 1) and also s = °T, with
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For a gas of non-relativistic free electrons in 3d, substitute from AM's eq. (2.65),
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To get higher order terms from Eq. (1), insert the Taylor series g(E) = pg(F’)(l)(E i HP=p! =
» (ks T)P g (2)xP=p! and look up in Arfken and Weber the values of
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for even p (the odd values of p give 0).



