
Phys 861, Fall 2000
Speci¯c heat of electrons in metals

Use c = T@s=@T , where s is the entropy per unit volume. Start from

s = ¡kB
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where g(E) is the density of levels and f is the Fermi function
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Note in passing that s vanishes for T ! 0, as it should, because f is either 0 or 1 in that limit. All the
speci¯c heats are the same to leading order in T ; it is easiest to compute the speci¯c heat at constant ¹ and
V . Then we need µ
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This formula is still exact. Now note that
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is strongly peaked at E = ¹ when kBT ¿ ¹. Then, in this limit,
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The exact value of the integral is ¼2=3. At low T , one can replace g(¹) with g(EF ), where EF is the value
of ¹ at T = 0. Then c = °T (at constant ¹) and also s = °T , with
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For a gas of non-relativistic free electrons in 3d, substitute from AM's eq. (2.65),

g(EF ) =
3
2

n
EF

To get higher order terms from Eq. (1), insert the Taylor series g(E) =
P

p g(p)(¹)(E ¡ ¹)p=p! =P
p (kBT )p g(p)(¹)xp=p! and look up in Arfken and Weber the values of
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for even p (the odd values of p give 0).


