
Take-home final exam (Phys 861; Fall 2005)

1. Thermodynamic potential of an ideal Fermi gas can be found from the
following formula

Ω = −T

∫

ln
(

1 + e−ε(p)/T
) ddp

(2π)
d
,

where d is the dimensionality of the system. Starting from this expression,
prove that the specific heat is a linear function of temperature at T � EF.
Calculate the proportionality constant γ in three and two dimensions,
C = γT .

2. Consider the following Hamiltonian

Ĥ =
∑

p,σ

p2

2m
ĉ†
pσ ĉpσ +

1

2

∑

q

V (q)ρ̂qρ̂−q +
∑

q

Vext(q)ρ̂q,

where ĉ and ĉ† are electron annihilation and creation operators, ρ̂q =
∑

p,σ
ĉ†
p+ q

2
σ
ĉp−q

2
σ is the electron density operator, V (q) is the two-particle

interaction, and Vext(q) is the external potential.

The current operator is defined as

Ĵq =
∑

p,σ

p

m
ĉ†
p+ q

2
σ
ĉp− q

2
σ

Prove the following operator identity (the continuity equation):

∂ρ̂q
∂t

− iq · Ĵq = 0̂

3. For a one-dimensional harmonic oscillator with mass m and frequency
ω, calculate the retarded GR

AB , advanced GA
AB , time-ordered GAB, and

temperature (Matsubara) GAB Green’s functions for the following choices
of the operators Â and B̂:

(a) Both Â and B̂ are equal to the position operator x̂.

(b) The operator Â is equal to the position operator x̂ and B̂ is equal to
the momentum operator p̂.

(c) The operator Â is equal to the annihilation operator â and B̂ is equal
to the creation operator â†.

The definitions of the Green’s functions are reminded below

• Retarded, GR
AB(t, t′) = −iθ(t− t′)

〈[

Â(t), B̂(t′)
]〉
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• Advanced, GA
AB(t, t′) = iθ(t′ − t)

〈[

Â(t), B̂(t′)
]〉

• Time-ordered, GAB(t, t′) = −i
〈

Tt

(

Â(t) B̂(t′)
)〉

• Matsubara, GAB(τ, τ ′) = −
〈

Tτ

(

Â(τ) B̂(τ ′)
)〉

In above definitions A(t)/A(τ) are Heisenberg operators in real/imaginary
time, Tt/Tτ are real/imaginary time-ordering operators, 〈. . .〉 indicates the
quantum-mechanical averaging, and [· , ·] is a commutator.

4. Consider a three-dimensional system of fermions, which interact with each
other with a point-like potential V (r − r′) = u0δ(r − r′). Calculate the
fermionic self-energy in the Hartree-Fock approximation. I.e., calculate
the following diagrams

Within the Hartree-Fock approximation, derive the general formula for
the correction to the chemical potential in terms of the spin s, the fermion
density n, and the interaction strength u0. Note that in the model of
“spinless fermions,” the correction vanishes. Can this fact be understood
without calculations?

Hint: Note that the integral of the Green’s function over energy is simply
the (Fermi) distribution function.

5. Consider a three-dimensional system of fermions interacting with each
other via a long range potential v(r) = g2/r2, where r is the distance
between the particles and g is a small constant. Doing the standard RPA
perturbation theory find the screened potential in real space and calculate
the spectrum of collective modes.

Hint: This problem is very similar to problem 3 of your mid-term (screen-
ing of Coulomb interaction in two dimensions).

6. Difficult problem (extra credit): The conductivity of a disordered normal
metal can be calculated from the classical Boltzmann equation or even
from Newton laws (see lectures). The result for the DC conductivity is
(Drude formula)

σ =
ne2τ

m
,
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where n is the density of carriers, e is the charge, m is the effective mass
of carriers, and τ is the scattering time.

The same formula can be derived from the linear response Kubo theory;
However calculations are more difficult: To find the conductivity one has
to calculate the current-current response function. In the presence of
an external field described by the vector-potential A(r, t), the current
operator is

ĵ(r, t) =
e

2m

[

−iψ̂†(r, t)∇ψ̂(r, t) + h. c.
]

−
e2

mc
A(r, t)ψ̂†(r, t)ψ̂(r, t)

We see that in the presence of an external field the current consists of two
parts: the usual gradient part and the diamagnetic term.

The electrical conductivity is determined by the current-current correla-
tion function, which has the form (in Matsubara representation)

Kjj
αβ(iωn, r− r′) = Pαβ(iωn, r − r′) +

ne2

m
δαβδ(r − r′), (∗)

where Pαβ is the correlator described by the diagram

This is a linear response correlator corresponding to the gradient part of
the current. In a disordered metal, the Matsubara Green’s function has
the following form:

G(εn,p) =
1

iεn − ξp + i/(2τ)sgn εn
,

where τ is the scattering time due to impurities (let us assume that only
point impurities are present). Note that the diagram contains velocities
vα = pα/m in the vertices.

Using the expression for the disorder-averaged Green’s function...

(a) Prove the following identity Pαβ(iωn = 0,q = 0) = −ne2

m δαβ . This
thus will prove that the zero-frequency bubble exactly cancels the
second term in Eq. (*) above.

(b) Since the electric field is related to the vector potential as E = − 1
c Ȧ,

the Matsubara conductivity can be defined as

σαβ(iωn) =
1

ωn
[Pαβ(iωn,0) − Pαβ(0,0)] .
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Calculate the Matsubara conductivity.

Hint: In solving this part of the problem, use the ξ-approximation,
i.e. convert the integral over momentum into an integral over ξ =
vF(p− pF).

(c) To find the conductivity as a function of the physical frequency, one
has to do an analytical continuation: I.e., analytically continue the
function σαβ(iωn) from the upper complex plane (n > 0) to real fre-
quencies. This can be done simply by replacing iωn → ω. Using this
procedure, calculate the AC conductivity and reproduce the standard
Drude formula in the ω → 0 limit.

Reading: Abrikosov, Gor’kov, and Dzyaloshinskii, Mahan, and Lectures

Due Friday, December 16 (9:00am, room PHS 313)

Each student gives a 20-30 minute presentation on one of the problems.
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