Take-home final exam (Phys 861; Fall 2005)

1. Thermodynamic potential of an ideal Fermi gas can be found from the following formula

$$
\Omega=-T \int \ln \left(1+e^{-\varepsilon(\mathbf{p}) / T}\right) \frac{d^{d} \mathbf{p}}{(2 \pi)^{d}}
$$

where d is the dimensionality of the system. Starting from this expression, prove that the specific heat is a linear function of temperature at $T \ll E_{\mathrm{F}}$. Calculate the proportionality constant γ in three and two dimensions, $C=\gamma T$.
2. Consider the following Hamiltonian

$$
\hat{\mathcal{H}}=\sum_{\mathbf{p}, \sigma} \frac{\mathbf{p}^{2}}{2 m} \hat{c}_{\mathbf{p} \sigma}^{\dagger} \hat{c}_{\mathbf{p} \sigma}+\frac{1}{2} \sum_{\mathbf{q}} V(\mathbf{q}) \hat{\rho}_{\mathbf{q}} \hat{\rho}_{-\mathbf{q}}+\sum_{\mathbf{q}} V_{\mathrm{ext}}(\mathbf{q}) \hat{\rho}_{\mathbf{q}}
$$

where \hat{c} and \hat{c}^{\dagger} are electron annihilation and creation operators, $\hat{\rho}_{\mathbf{q}}=$ $\sum_{\mathbf{p}, \sigma} \hat{c}_{\mathbf{p}+\frac{\mathbf{q}}{2} \sigma}^{\dagger} \hat{c}_{\mathbf{p}-\frac{\mathbf{q}}{2} \sigma}$ is the electron density operator, $V(q)$ is the two-particle interaction, and $V_{\text {ext }}(q)$ is the external potential.
The current operator is defined as

$$
\hat{\mathbf{J}}_{\mathbf{q}}=\sum_{\mathbf{p}, \sigma} \frac{\mathbf{p}}{m} \hat{c}_{\mathbf{p}+\frac{\mathbf{q}}{2} \sigma}^{\dagger} \hat{c}_{\mathbf{p}-\frac{\mathbf{q}}{2} \sigma}
$$

Prove the following operator identity (the continuity equation):

$$
\frac{\partial \hat{\rho}_{\mathbf{q}}}{\partial t}-i \mathbf{q} \cdot \hat{\mathbf{J}}_{\mathbf{q}}=\hat{0}
$$

3. For a one-dimensional harmonic oscillator with mass m and frequency ω, calculate the retarded $G_{A B}^{R}$, advanced $G_{A B}^{A}$, time-ordered $G_{A B}$, and temperature (Matsubara) $\mathcal{G}_{A B}$ Green's functions for the following choices of the operators \hat{A} and \hat{B} :
(a) Both \hat{A} and \hat{B} are equal to the position operator \hat{x}.
(b) The operator \hat{A} is equal to the position operator \hat{x} and \hat{B} is equal to the momentum operator \hat{p}.
(c) The operator \hat{A} is equal to the annihilation operator \hat{a} and \hat{B} is equal to the creation operator \hat{a}^{\dagger}.

The definitions of the Green's functions are reminded below

- Retarded, $G_{A B}^{R}\left(t, t^{\prime}\right)=-i \theta\left(t-t^{\prime}\right)\left\langle\left[\hat{A}(t), \hat{B}\left(t^{\prime}\right)\right]\right\rangle$
- Advanced, $G_{A B}^{A}\left(t, t^{\prime}\right)=i \theta\left(t^{\prime}-t\right)\left\langle\left[\hat{A}(t), \hat{B}\left(t^{\prime}\right)\right]\right\rangle$
- Time-ordered, $G_{A B}\left(t, t^{\prime}\right)=-i\left\langle T_{t}\left(\hat{A}(t) \hat{B}\left(t^{\prime}\right)\right)\right\rangle$
- Matsubara, $\mathcal{G}_{A B}\left(\tau, \tau^{\prime}\right)=-\left\langle T_{\tau}\left(\hat{A}(\tau) \hat{B}\left(\tau^{\prime}\right)\right)\right\rangle$

In above definitions $A(t) / A(\tau)$ are Heisenberg operators in real/imaginary time, T_{t} / T_{τ} are real/imaginary time-ordering operators, $\langle\ldots\rangle$ indicates the quantum-mechanical averaging, and $[\cdot, \cdot]$ is a commutator.
4. Consider a three-dimensional system of fermions, which interact with each other with a point-like potential $V\left(\mathbf{r}-\mathbf{r}^{\prime}\right)=u_{0} \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)$. Calculate the fermionic self-energy in the Hartree-Fock approximation. I.e., calculate the following diagrams

Fock

Within the Hartree-Fock approximation, derive the general formula for the correction to the chemical potential in terms of the spin s, the fermion density n, and the interaction strength u_{0}. Note that in the model of "spinless fermions," the correction vanishes. Can this fact be understood without calculations?
Hint: Note that the integral of the Green's function over energy is simply the (Fermi) distribution function.
5. Consider a three-dimensional system of fermions interacting with each other via a long range potential $v(r)=g^{2} / r^{2}$, where r is the distance between the particles and g is a small constant. Doing the standard RPA perturbation theory find the screened potential in real space and calculate the spectrum of collective modes.
Hint: This problem is very similar to problem 3 of your mid-term (screening of Coulomb interaction in two dimensions).
6. Difficult problem (extra credit): The conductivity of a disordered normal metal can be calculated from the classical Boltzmann equation or even from Newton laws (see lectures). The result for the DC conductivity is (Drude formula)

$$
\sigma=\frac{n e^{2} \tau}{m}
$$

where n is the density of carriers, e is the charge, m is the effective mass of carriers, and τ is the scattering time.
The same formula can be derived from the linear response Kubo theory; However calculations are more difficult: To find the conductivity one has to calculate the current-current response function. In the presence of an external field described by the vector-potential $\mathbf{A}(\mathbf{r}, t)$, the current operator is

$$
\hat{\mathbf{j}}(\mathbf{r}, t)=\frac{e}{2 m}\left[-i \hat{\psi}^{\dagger}(\mathbf{r}, t) \nabla \hat{\psi}(\mathbf{r}, t)+\text { h. c. }\right]-\frac{e^{2}}{m c} \mathbf{A}(\mathbf{r}, t) \hat{\psi}^{\dagger}(\mathbf{r}, t) \hat{\psi}(\mathbf{r}, t)
$$

We see that in the presence of an external field the current consists of two parts: the usual gradient part and the diamagnetic term.
The electrical conductivity is determined by the current-current correlation function, which has the form (in Matsubara representation)

$$
\begin{equation*}
\mathcal{K}_{\alpha \beta}^{j j}\left(i \omega_{n}, \mathbf{r}-\mathbf{r}^{\prime}\right)=\mathcal{P}_{\alpha \beta}\left(i \omega_{n}, \mathbf{r}-\mathbf{r}^{\prime}\right)+\frac{n e^{2}}{m} \delta_{\alpha \beta} \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \tag{*}
\end{equation*}
$$

where $\mathcal{P}_{\alpha \beta}$ is the correlator described by the diagram

This is a linear response correlator corresponding to the gradient part of the current. In a disordered metal, the Matsubara Green's function has the following form:

$$
\mathcal{G}\left(\varepsilon_{n}, \mathbf{p}\right)=\frac{1}{i \varepsilon_{n}-\xi_{\mathbf{p}}+i /(2 \tau) \operatorname{sgn} \varepsilon_{n}}
$$

where τ is the scattering time due to impurities (let us assume that only point impurities are present). Note that the diagram contains velocities $v_{\alpha}=p_{\alpha} / m$ in the vertices.
Using the expression for the disorder-averaged Green's function...
(a) Prove the following identity $\mathcal{P}_{\alpha \beta}\left(i \omega_{n}=0, \mathbf{q}=\mathbf{0}\right)=-\frac{n e^{2}}{m} \delta_{\alpha \beta}$. This thus will prove that the zero-frequency bubble exactly cancels the second term in Eq. (*) above.
(b) Since the electric field is related to the vector potential as $\mathbf{E}=-\frac{1}{c} \dot{\mathbf{A}}$, the Matsubara conductivity can be defined as

$$
\sigma_{\alpha \beta}\left(i \omega_{n}\right)=\frac{1}{\omega_{n}}\left[\mathcal{P}_{\alpha \beta}\left(i \omega_{n}, \mathbf{0}\right)-\mathcal{P}_{\alpha \beta}(0, \mathbf{0})\right] .
$$

Calculate the Matsubara conductivity.
Hint: In solving this part of the problem, use the ξ-approximation, i.e. convert the integral over momentum into an integral over $\xi=$ $v_{\mathrm{F}}\left(p-p_{\mathrm{F}}\right)$.
(c) To find the conductivity as a function of the physical frequency, one has to do an analytical continuation: I.e., analytically continue the function $\sigma_{\alpha \beta}\left(i \omega_{n}\right)$ from the upper complex plane $(n>0)$ to real frequencies. This can be done simply by replacing $i \omega_{n} \rightarrow \omega$. Using this procedure, calculate the AC conductivity and reproduce the standard Drude formula in the $\omega \rightarrow 0$ limit.

Reading: Abrikosov, Gor'kov, and Dzyaloshinskii, Mahan, and Lectures
Due Friday, December 16 (9:00am, room PHS 313)
Each student gives a 20-30 minute presentation on one of the problems.

