Problem set 1

1. Show that the number of quantum states of an electron moving in a volume V with the momentum in the interval $(\mathbf{p}, \mathbf{p}+d \mathbf{p})$ is

$$
d \tau=2 V \frac{d^{3} \mathbf{p}}{(2 \pi \hbar)^{3}}
$$

2. Find the distribution function of fictitious particles, which have the following property: No more than N particles $(1<N<\infty)$ can occupy a single quantum state. Such particles do not exist in nature, but it should not stop you from solving the problem.
3. Find the Fermi momentum in a two and four dimensional Fermi gas.
4. Estimate the Fermi energy of electrons in a typical three-dimensional metal. Should the electron gas be considered quantum (degenerate) or classical at room temperature?
5. Calculate quantum corrections to Clapeyron's equation $(P V=N T)$ in the limit of high temperature. Consider ideal Bose and Fermi gases.

Due Thursday, September 1 (in class)

