Prooblem set 5

- 1. Phonon excitations in a crystal are often described by the Debye model in which the phonon spectrum is $\omega(\mathbf{k}) = c|\mathbf{k}|$, if $k < k_{\rm D}$ (where $\omega_{\rm D}$ is the Debye frequency) and $\omega(k) = 0$, if $k > k_{\rm D}$. Find the threshold Debye frequency in a crystal of volume V, which contains N identical atoms. Assume that only longitudinal phonons are present.
- 2. Draw all possible topologically non-equivalent diagrams (connected and disconnected) in second order perturbation theory with respect to a two-particle interaction $V(\mathbf{r}_1 \mathbf{r}_2)$.
- 3. Write down the analytical expressions (in momentum representation) corresponding to the following diagrams:

4. A localized magnetic impurity is introduced in a Fermi gas. The spin interacts with electrons via the following exchange interaction

$$\mathcal{H}_{\rm int} = J \int S^i \delta(\mathbf{r}) \psi^{\dagger}_{\alpha}(\mathbf{r}) \sigma^i_{\alpha\beta} \psi_{\beta}(\mathbf{r}) d^3 \mathbf{r} \equiv J S^i \hat{\sigma}^i(\mathbf{r} = \mathbf{0}),$$

where J is a constant, which is assumed *small*, **S** is the impurity spin, $i = x, y, z, \alpha$ and β are spin indices, and $\sigma^i_{\alpha\beta}$ are the Pauli matrices. Find the spin polarization $\langle \hat{\sigma}^i(\mathbf{r}) \rangle$ at large distances from the spin $(rp_F \gg 1)$ in leading order of perturbation theory with respect to the exchange interaction.

Hint: Express the polarization density through the Green's function as follows $\langle \hat{\sigma}^{i}(\mathbf{r}) \rangle = \lim_{t' \to t+0} \left[-i\sigma^{i}_{\alpha\beta}G_{\beta\alpha}(\mathbf{r},t;\mathbf{r}',t') \right]$. Calculate the first order correction $G_{\alpha\beta}(\varepsilon,\mathbf{r};\mathbf{r}') = JS^{i}\sigma^{i}_{\alpha\beta}G_{0}(\varepsilon,\mathbf{r})G_{0}(\varepsilon,-\mathbf{r}')$ in real space.

Reading: Abrikosov, Gor'kov, and Dzyaloshinskii Due Thursday, October 13 (in class)