Physics 862 { Spring 02 Problem set 1 - Due Tuesday, Jan 29

1.

Some drills with second quantization.

a) Let $\begin{bmatrix} \tilde{A} & I \\ 1 \end{bmatrix}$ be the state with no particle and $\begin{bmatrix} \tilde{A} & I \\ 0 \end{bmatrix}$ the state with one particle, the particle being an electron of a given_A spin or I the equivalent. Then the creation operator \hat{C}^{y} is represented by the matrix $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$: What matrices represent the following operators:

 $c; cc; c^{y}c^{y}; c^{y}c; cc^{y}; c^{y}c + cc^{y}; c^{y}c_{j} cc^{y}$ (1)

- b) By convention, $c_{x}^{y} j0i \quad j''i$ represents the one-particle state with spin in the z direction. Construct a second-quantized operator, which we can call \hat{S}_{z} , with the following properties: applied to j0i it gives 0, applied to j''i it gives $\frac{1}{2}j''i$ and applied to j#i it gives $i \quad \frac{1}{2}j\#i$. Using only the anticommutation properties of the \hat{c}_{4} and \hat{c}_{4}^{y} operators, show that \hat{S}_{z} also gives correctly the z component of total spin in the two-particle state $j''\#i = \hat{c}_{x}^{y}\hat{c}_{\#}^{y}j0i$.
- c) Construct the second-quantized operators \hat{S}_x and \hat{S}_y and their eigenstates. You may do this any way you like. One possibility is to construct \neg rst the raising and lowering operators \hat{S}_+ and \hat{S}_i and then use $\hat{S}_{\hat{S}} = \hat{S}_x \hat{S} i \hat{S}_y$.

2.

Obtain the second-quantized expression for the 3 Cartesian components of the magnetization $\hat{M}(r)$. It should be easy to write down $\hat{M}_z(r)$. For the other 2 components, the results of problem 1 can be helpful.

3.

- a) Compute the Jacobian of the transformation $\mathbf{R} = (\mathbf{r} + \mathbf{r}^0)=2$; $\mathbf{s} = \mathbf{r}_i \mathbf{r}^0$. It is enough to do this in one dimension (why?).
- b) Consider a wire of length L and uniform cross-section A and obtain a second-quantized operator f such that f gives the current I °owing in the wire. If the cross-section is not uniform, the current is still constant along the wire, as long as there is no charge accumulation.

Solution

$$\hat{S}_{z} = \frac{1}{2} \hat{c}_{''}^{y} \hat{c}_{''} \, i \, \hat{c}_{\#}^{y} \hat{c}_{\#}$$
(2)

$$\hat{S}_{z}^{2} = \frac{1}{4} \hat{C}_{"}^{y} \hat{C}_{"} \, i \, \hat{C}_{\#}^{y} \hat{C}_{\#} \hat{C}_{\#}^{z} \hat{C}_{"}^{y} \hat{C}_{"} \, i \, \hat{C}_{\#}^{y} \hat{C}_{\#}^{z} = \frac{1}{4}$$
(3)