Physics 862 \{ Spring 02

Problem set 1 - Due Tuesday, J an 29
1.

Some drills with second quantization.
 particle being an electron of a given $\tilde{A}_{\text {A }}$ spin $r_{!}$the equivalent. Then the creation operator e^{y} is represented by the matrix $\begin{array}{lll}0 & 1 \\ 0 & 0\end{array}$: What matrices represent the following operators:
b) By convention, cy joi ' j"i represents the one-particle state with spin in the z direction. Construct a second-quantized operator, which we can call \hat{S}_{z}, with the following properties: applied to j0i it gives 0 , applied to j " i it gives $\frac{1}{2} \mathrm{j}$ " i and applied to $\mathrm{j} \#$ it gives i $\frac{1}{2} j \neq \#$. Using only the anticommutation properties of the \widehat{C}_{3} and $\mathbb{C B}_{3}$ operators, show that \hat{S}_{z} also gives correctly the z component of total spin in the two-particle state

c) Construct the second-quantized operators \hat{S}_{x} and $\hat{S_{y}}$ and their eigenstates. You may do this any way you like. One possibility is to construct ${ }^{-}$rst the raising and lowering operators $\hat{S_{+}}$and $\hat{S_{i}}$ and then use $\hat{S_{\S}}=\hat{S_{x}} \S i \hat{S_{y}}$.
2.

Obtain the second-quantized expression for the 3 C artesian components of the magnetization $\hat{M}(r)$. It should be easy to write down $\hat{M}_{z}(r)$. For the other 2 components, the results of problem 1 can be helpful.
3.
a) Compute the J acobian of the transformation $R=\left(r+r^{9}\right)=2$; $s=r ; r^{0}$. It is enough to do this in one dimension (why?).
b) Consider a wire of lengte L and uniform cross-section A and obtain a second-quantized operator ${ }^{\wedge}$ such that \boldsymbol{I}^{\wedge} gives the current I ${ }^{\circ}$ owing in the wire. If the cross-section is not uniform, the current is still constant along the wire, as long as there is no charge accumulation.
$=$ = = = = = = = = = = = = = = = Solution

