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The essential features of Klein tunneling of massless fermions in graphene may be treated in one

dimension without the need for Dirac spinors. Two dimensions needs a spinor treatment and is

investigated numerically, which lets us compare tunneling through smooth potential barriers with

that through idealized step potentials. VC 2012 American Association of Physics Teachers.
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I. INTRODUCTION

There has been a massive explosion of interest in graphene
since its discovery just a few years ago.1 There are several
reasons for the interest in graphene. Foremost is its remark-
able quantum properties, which will be exploited in new
scientific and technical applications. In addition, the electro-
dynamic properties of graphene exhibit some remarkable
characteristics that allow it to serve as an analogue for a
number of exotic processes, which, although known theoreti-
cally, has not been observed previously. Graphene may
prove to be a key test bed for a number of fundamental phys-
ical processes, just as superconductors lead Nambu2 to a
deeper understanding of spontaneous symmetry breaking in
fundamental particle physics in the 1950s.

One of the phenomena on which graphene appears to shed
some light is Klein tunneling,3 which is a form of potential
scattering that was originally associated with the Dirac equa-
tion. It has not been observed in that context due to the unre-
alizably high potentials required. Graphene allows Klein
tunneling to be studied experimentally for the first time, and
also provides important insights into the nature of the Dirac
equation and more generally, into quantum field theory.4 For
this reason a knowledge of graphene is important to physi-
cists other than specialists in materials science and technol-
ogy. Graphene is also a potentially attractive example for
students of quantum mechanics. However, the current litera-
ture on the quantum mechanics of graphene is beyond the
scope of the usual undergraduate courses and outside the ex-
perience of most non-specialist physicists. One reason for
the difficulty is that graphene is usually treated by the use of
Dirac’s relativistic theory adapted to massless fermions,
including multiple component spinors.3 It is not immediately
obvious how the Dirac spinor formalism arises in the Hamil-
tonian for graphene, because the speed of electrons in gra-
phene is well below the speed of light in a vacuum. Also,
electrons are normally considered as massive particles, at
least when they are free, and the spin of the electron, whose
presence usually becomes known in the company of mag-
netic fields, does not have any obvious physical role in the
dynamics of the electrons in graphene.

A key goal of this paper is to make Klein tunneling in gra-
phene more accessible to non-specialists and, in particular,
to encourage its inclusion in undergraduate courses, which
usually are over reliant on the Schrödinger equation. One as-
pect of the approach adopted here is to show that the use of
spinors is not essential in certain cases if we focus on the dis-
persion relation of electrons in graphene.5 The reason for
the formal appearance of Dirac spinors in the dynamical
properties of electrons in grapheme is explained in terms of
the requirements for representing the original form of the

graphene dispersion relation, which depends on the modulus
of the wavevector. The appearance of spinors is demystified
somewhat by discussing the role they play in an alternative
representation of the modulus from the usual Pythagorean
one. Also the role of wave mode coupling in inhomogeneous
media is emphasized in dealing with reflection processes.

An important aspect of potential scattering is the role of
boundary conditions in determining the reflection and trans-
mission coefficients. Most physicists have encountered these
issues in the context of potential scattering problems with the
Schrödinger equation, where idealized discontinuous steps
and square barriers are commonly treated by considering the
continuity conditions for the wavefunctions. Such idealized
potentials and their associated boundary conditions will be
examined for massless fermions. It is useful and instructive to
investigate the effects of more realistic smooth potentials. To
this end a numerical method is employed to compare the
effects of smooth and sharp edged potential barriers.

The paper is organized as follows. The nature of Klein
tunneling is outlined in Sec. II. The dispersion properties of
electrons in graphene are introduced in Sec. III, and in
Sec. IV the calculations of the reflection and transmission coef-
ficients of electrons in graphene, in one and two dimensions,
are presented. The results are briefly discussed in Sec. V.

II. A BRIEF DESCRIPTION OF KLEIN TUNNELING

Klein’s original analysis was on the transmission of rela-
tivistic electrons across a potential step. Dirac’s full relativis-
tic spinor theory of the electron is required to properly
calculate the reflection and transmission coefficients in mas-
sive particles. This calculation is beyond the scope of the
present paper, but the essential features of Klein tunneling
can most easily be understood with reference to the energy-
wavenumber dispersion relation. The energy eigenvalues of
the Dirac equation for a single relativistic electron of mass m
take the form

E ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2k2c2 þ m2c4

p
; (1)

where E is the energy, k is the wavenumber, c is the speed of
light in vacuum, and �h is Planck’s constant divided by 2p.
One of the main issues arising from Eq. (1) that interested
Dirac was that there is one positive and one negative root,
which famously lead to Dirac’s idea of anti-particles. In the
E-k diagram in Fig. 1 the A branch represents the positive
energy states and the B branch represents the negative ones.
The straight lines labeled L and R are asymptotes, the rele-
vance of which we will discuss later. For real k, we must
have E>mc2 for the positive energy states or E<�mc2 for
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negative ones. It is important to keep in mind that the states
in the A and B branches may both be occupied by electrons.
The connection to anti-electrons, that is, positrons, is not rel-
evant here.

Imagine an electron in a positive energy state from the A
branch, traveling along the x-axis in the direction of increas-
ing x, with positive momentum in the absence of a potential.
At some point it encounters a potential step, V¼V0. If
E�V0>mc2, the electron will continue to propagate to the
right with the new positive wavenumber, k, such that

E� V0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2k2c2 þ m2c4

p
. If E�V0<mc2, the dispersion

relation can be satisfied only if k2< 0. Hence, the momentum
�hk inside the potential becomes imaginary, the wave function
decays exponentially, and there is have total reflection. If the
potential is increased further, so that E�V0 <�mc2, then

we can have E� V0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2k2c2 þ m2c4

p
and once again

k2> 0, so that propagation inside the potential is possible.
However, propagation is possible only for states from the B
branch. Pauli pointed out that if the particles are to continue
propagating to the right, they need a positive group speed.
For the A branch, the group velocity (the gradient of the E-k
curve) is positive for positive k, but for the B branch a posi-
tive group speed requires negative k. Hence, the electron
continues to propagate to the right with a positive group
speed, but with a negative momentum in a B state. In princi-
ple, transmission through the potential becomes perfect as its
value approaches infinity. This puzzling result was originally
called the Klein paradox.4

In the limit as the mass goes to zero, the two dashed
curves in Fig. 1 become equal to the two solid curves. We
remark that there is now no gap between the A and B
branches because they coalesce at the apices. In the massless
limit the dispersion relation becomes, E ¼ 6�hcjkj, which, in
one dimension, is a pair of “Vs” in E-k space, one upright in
the upper half plane and one inverted in the lower half plane.
We see that the upper curve in Fig. 1 becomes E ¼ þ�hcjkj
and the lower curve becomes E ¼ ��hcjkj. This result can be
seen as the natural limit of the massive case because it main-
tains the distinction between the positive and negative
energy states.

For graphene the characteristic speed c is replace by the
Fermi velocity VF (see Sec. III). In this sense graphene can be

seen as an analogue to the relativistic massless case of the
Dirac equation. Klein tunneling still occurs in this massless sit-
uation, but there is no imaginary k phase, because there is no
energy gap between the positive and negative energy states.

Although the previous analysis points to an important
physical connection between Klein tunneling in graphene and
relativistic electrodynamics, it gives rise to mathematical dif-
ficulties, in the same way as they arise in the Dirac’s relativis-
tic equation. This difficulty leads to the need for spinors. The
reason is that it is necessary to find the square root of the Lap-
lacian differential operator. In the one-dimensional massless
case considerable simplification is possible, because in one
dimension, the Laplacian is a perfect square, and we can take
its square root, as we will explain in Sec. III.

III. ELECTRON WAVE MODES IN GRAPHENE

The dispersion relation for electrons in graphene is
derived from the tight-binding approximation for the band
theory of graphite, which was developed long before gra-
phene existed. According to Wallace,5 the dispersion relation
for electrons with energy E and wave vector k, near the cor-
ners of the Brillouin zone, in a single hexagonal layer, can
be written as

jE� ECj ¼ �hVFjk� kCj; (2)

where the subscript C refers to the location of the corner in
k-space and VF is a characteristic velocity. For graphene, VF

is the Fermi velocity. If we redefine the energy and momen-
tum relative to EC and kC, respectively, we have

E ¼ 6�hVFjkj: (3)

It is important to realize that Eq. (3) represents a dispersion
relation that depends on the wavevector through its magni-
tude only. Thus, it represents a set of modes forming the
surfaces of a pair of cones in energy-momentum space. The
upper cone represents positive energy modes (with respect to
EC) and the lower cone represents negative energy modes.
Because the cones touch at their apices, the electrons are
gapless.

Equation (3) is not as simple as it might first appear. It is
sometimes referred to as a linear relation between E and k,
but, the magnitude of a vector is not strictly a linear function,
because the Cartesian vector ðkx; ky; kzÞ has magnitudeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
x þ k2

y þ k2
z

q
, which is not linear in the components. The

difficulty associated with the nonlinearity of the magnitude
can be seen when we try to replace k, or rather the momen-
tum, by the usual operator involving spatial derivatives of a
wave function w. Then Eq. (3) becomes

Ew ¼ 6�hVF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�@2=@x2 � @2=@y2 � @2=@z2

p
w: (4)

We now have the problem of taking the square root of the
Laplacian operator, a problem similar to the one that faced
Dirac in finding a wave equation for a single relativistic elec-
tron with a first-order time derivative. Dirac’s reasons for
wanting to do so are not relevant here, but his brilliant solu-
tion is. Because of these difficulties, it is worth looking at
the problem in more detail.

The problem is to find a form for the magnitude of a vector.
We are all familiar with the Pythagorean definition of the
magnitude squared as k2¼ kx

2þ ky
2þ kz

2. It is advantageous,

Fig. 1. Dispersion curves A and B for massive relativistic particles (dashes)

and asymptotes L and R (solid lines) representing massless particles.
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particularly when it is desired to substitute differential opera-
tors for the components of k, to write the magnitude of k as a
linear function of its components. We can do so by first
writing6

jkj ¼ k ¼ rxkx þ ryky þ rzkz: (5)

If we square both sides of Eq. (5) and equate the coefficients
of the terms of the resulting expression with those in
the equivalent Pythagorean expression, we obtain the
requirement that r2

x ¼ r2
y ¼ r2

z ¼ 1 and rxry þ ryrx ¼ 0, to-
gether with cyclic permutations in the indices of the latter
relation. These conditions are satisfied by the well-known
Pauli spin matrices. The Pauli matrices are inextricably
linked to electron spin, and because Dirac found them by
factoring the relativistic single particle equation, spin is often
considered a relativistic effect, despite the fact that there is
nothing particularly relativistic about spin.6,7 The Pauli mat-
rices are really about rotational symmetry rather than specific
dynamical effects of the electron. The properties of the com-
ponents of r imply that the right-hand side of Eq. (5) is iso-
tropic, despite being linear in the components of the vector.
Hestenes has argued that this complication is necessary only
because of the shortcomings of vector algebra as it is cur-
rently used. Hestenes’ view is not surprising when we recall
that what we call vector algebra, unlike matrix algebra, con-
tains neither universal unit element nor multiplicative
inverse. The lack of these features by vector algebra means it
is much more limited than matrix algebra in what it can rep-
resent. These considerations are beyond the scope of this pa-
per and the reader is advised to consult Ref. 8 and the
references therein for further discussions of this issue.

If we replace the right-hand side of Eq. (3) by the spinor
form as indicated in Eq. (5), we find the form of the graphene
Hamiltonian, H ¼ �i�hVFr:r, commonly used in the
research literature. The resulting equation is used in Sec. IV
as the basis of a wave equation for analyzing Klein tunneling
in graphene. A useful simplification of these equations is
possible in one dimension, which allows us to explore the
essential features of Klein tunneling without the need for
Dirac spinors. The basis for this simplification is as follows.

There is an important but subtle point in one dimension,
which is that neither E ¼ þ�hVFjkj nor E ¼ ��hVFjkj sepa-
rately constitute linear relations, because both have disconti-
nuities in their gradients at the origin. However, the pair
E ¼ 6�hVFjkj taken together is identical to the pair of rela-
tions E ¼ 6�hVFk, which is a pair of straight lines of positive
or negative slope that have been labeled L (left propagating)
and R (right propagating) in Fig. 1. That is, we can split an
“X” symbolically into two “Vs” (V and V�1) or into two
straight lines (/ and \). Thus, in quantum mechanical terms
we can replace a positive-negative energy pair of states by
an equivalent left-right propagation pair of states. This
exchange of state labels is not possible in the massive case,
even in one dimension.

The nature of left and right propagation needs some clari-
fication, because the sign of k changes, which corresponds to
a reversal of momentum as the straight lines cross the k-
axis. Because the direction of propagation is connected to
the sign of the group velocity rather than that of k, the line la-
beled R always has a positive gradient, regardless of the sign
of E or k. Thus, the dispersion relation represented by the
line R always gives rise to a positive group velocity, which
indicates right propagation. Similarly, the negative gradient

of line L always gives rise to a negative group speed and rep-
resents left propagating particles. This situation is unaffected
by the potential as can be seen in Fig. 2. As the particle
enters the region of increasing potential, E is replaced by E – V
in the E-k relation, so the lines L and R shift to new posi-
tions L0 and R0, but their respective slopes and hence group
speeds are unaffected. This insensitivity of the group speed
to the potential has important consequences for potential
scattering of electrons in grapheme, which we consider in
Sec. IV.

The one-dimensional case may be treated with the aid of a
pair of first-order wave equations, which are obtained by set-
ting the partial derivatives with respect to y and z in Eq. (4)
to zero and by writing the square root of the second order de-
rivative with respect to x as a pair of first-order derivatives,
in analogy with the two linear functions, 6k. Then, Eq. (4)
becomes

Ew ¼ 6i�hVF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@2=@x2

p
w ¼ 6i�hVF@w=@x: (6)

The result is a pair of well-behaved, first-order differential
equations with scalar wavefunctions. There is no need for
spinors in this case.

This simple option was not available to Dirac, because
there is an extra term for electrons proportional to the square
of the electron mass inside the square root in Eq. (6) which
does not constitute a perfect square, even in one dimension.
We will show more formally that Eq. (6) is the limit of the
more general two-dimensional case which does require
multi-component wave functions.

Given the problems involved in dealing with the difficul-
ties of the modulus function, it is worth considering why we
did not square both sides of Eq. (3) before operating on the
wavefunction. The result would be a single second-order dif-
ferential equation which eliminates the need for taking the
square root of the differential operators. In the massless case,
we obtain the wave equation, which is ubiquitous in classical
physics as well as accounting for photons, among other
things, in quantum theory. For massive particles the result is
the Klein-Gordon equation, which was Dirac’s starting point.

Fig. 2. Effect of potentials on the massless particle dispersion curves. Solid

lines, L and R represent the case with zero potential, with the effects of

increasing potential indicated by the lengthening of the dashes. P, P0, and P00

indicate the position in E-k space of a particle in a region of increasing

potential.
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In the absence of a potential the single second-order equation
is equivalent to the pair of first-order equations in Eq. (6).
This equivalence is most easily understood by writing

ðE2 þ �h2VF
2@2=@x2Þw

¼ ðE� i�hVF@=@xÞðEþ i�hVF@=@xÞw ¼ 0: (7)

Note that the two bracketed operators after the first equals
sign in Eq. (7) commute, and thus can be written in reverse
order without changing the result. With the order as written
in Eq. (7), the solution is obtained by setting the wave func-
tion operated on by the last bracketed factor equal to zero.
This procedure is equivalent to choosing the minus sign in
Eq. (6). With the order reversed, we obtain the positive form
in Eq. (6). We can see that the two solutions in Eq. (6) are
identical to those of Eq. (7) and its reversed form. In the
massive case without a potential, Dirac’s relativistic equation
for a single electron is equivalent to the Klein-Gordon equa-
tion in that the equations have the same eigenvalues. It is
only when potentials are included that there are differences
in the solutions; for example, the appearance of electron spin
when a magnetic field is added. Without the potentials, spin
effects remain hidden.

There is a simple interpretation of the solutions of the two
equations in Eq. (6). We designate the solution with the plus
sign on the right-hand side of Eq. (6) as wR, and the one with
the minus sign as wL, where the subscripts indicate propaga-
tion to the right and to the left, respectively. Equation (7)
shows that left and right propagating waves are uncoupled.
The equivalence of Eqs. (6) and (7) disappears in the pres-
ence of inhomogeneous potentials. To see this difference, we
note that if there exists a one-dimensional potential, V(x),
which is inhomogeneous in the direction of motion of the
electrons, that is, along the x-axis, then Eq. (6) can be gener-
alized to

ðE� VðxÞÞw ¼ 6i�hVF@w=@x: (8)

In this case, equipotentials are planes with normals parallel
to the electron motion. If we choose a one-dimensional
potential with equipotential planes that are not normal to the
electron motion, the problem is two-dimensional. For the
one-dimensional case with an inhomogeneous potential,
Eq. (7) becomes

ððE� VðxÞÞ2 þ �h2V2
F@

2=@x2Þw ¼ 0; (9)

and Eq. (9) can no longer be factored into the two parts of
Eq. (8). Equation (9) can be written as

ðE� VðxÞ � i�hVF@=@xÞðE� VðxÞ þ i�hVF@=@xÞw
¼ i�hVF@VðxÞ=@xÞw: (10)

Equation (9) shows that left and right propagating waves are
coupled if the right-hand side is non-zero, that is, where there
is a potential gradient. In the presence of inhomogeneous
potentials Eqs. (8) and (9) are not equivalent. They are in a
sense opposite sides of the same coin because they both rep-
resent massless particles, with Eq. (8) representing fermions
and Eq. (9) representing bosons. The latter case is beyond
the scope of this paper.

IV. KLEIN TUNNELING IN GRAPHENE

A. One dimension

We first examine the solutions of Eq. (8). As long as
Eq. (8) holds rather than Eqs. (9) and (10), we still have two
independent waves, wR, and wL. wR satisfies

ðE� VðxÞ � i�hVF@=@xÞwR ¼ 0: (11)

Equation (11) can be integrated to give wR ¼ wRð0Þeia,
where

aðxÞ ¼
ðx

0

ðE� VðxÞÞdx=�hVF: (12)

The result for the left propagating wave is wL ¼ wLð0Þe�ia.
This result looks trivial. It implies that if we start out with a
right propagating wave, there is a right propagating wave of
the same amplitude, irrespective of the shape and size of the
potential. If there were a potential step, the boundary condi-
tion would also be trivial and we would only need one, that
is, w is continuous. There is no need for a second because no
other wave is excited, unlike the second-order case. There is
no reflection, although there is refraction, in the sense that
the wavenumber k (=@a=@x) varies. This complete lack of a
reflected wave constitutes perfect Klein tunneling. However,
although it implies the continuity of the wave function, it
also implies that the gradient of the wave function continu-
ally changes. If there were a step in the potential, there
would be a corresponding step in the gradient of the wave-
function, which is in contrast to what is found with the
Schrödinger equation.

This result is not as trivial as it first appears, because it is
possible that a particle of given energy E can, in principle,
enter a region where the potential energy V exceeds it. As we
saw in Sec. III, the wave number changes sign and the mo-
mentum of the particle reverses, while the group velocity,
dx/dk, which always equals VF in this case, is independent
of the potential. Thus, the energy flux is undisturbed by the
potential. Note also that the particle remains on the right
propagating branch even though it is now in the lower
branch, B (see Figs. 1 and 2). Thus, a right propagating parti-
cle does not excite a left propagating mode when it enters
the potential, which re-emphasizes the point that there is no
mode coupling. The point in E-k space just slides along the
same linear branch of the dispersion curve as the value of the
potential changes (see Fig. 2). Here the sequence of pairs of
lines (R, L), (R0, L0), and (R00, L00) represents the state of the
system on the E-k diagram as the particle enters increasing
values of the potential. The particle starts in a zero potential
at point P and moves to points P0 and P00 in E-k space. If it
starts in the upper V as an electron, it moves through the
apex when the energy and potential are equal, and then con-
tinues onto the lower inverted V state as an electron. All that
happens as far as the wavefunction is concerned is that as the
particle approaches the potential, its phase winds forward
until E¼V, at which point phase progression stops. If V con-
tinues to increase, the phase begins to unwind. There is no
dramatic physical change implied.

B. Two dimensions

In two dimensions there is no simple way of avoiding
Dirac’s brilliant maneuver of taking the square root of the
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Laplacian operator. Substituting the spinor form for the mag-
nitude of the wave vector in Eq. (5) into the dispersion rela-
tion leads to the two-dimensional wave equation

Ew ¼ �hVF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�@2=@x2 � @2=@y2

p
w

¼ �i�hVFðrx@=@xþ ry@=@yÞw: (13)

As is well known, the appearance of the Pauli matrices in
Eq. (13) implies that the wave function needs two compo-
nents to describe it. If we represent it by a column vector
with components X and Y, then, with the addition of a poten-
tial that depends only on x, Eq. (13) becomes

ðE� VðxÞÞX ¼ �i�hVFð@=@xþ qÞY (14)

and

ðE� VðxÞÞY ¼ �i�hVFð@=@x� qÞX; (15)

where we have assumed that the y-dependence of both compo-
nents of the wave function is proportional to exp(iqy) for all x.
In a uniform potential with plane wave solutions, the two
eigensolutions to Eqs. (14) and (15) are Y¼6Xexp(i/), where
tan /¼ q=k and k2¼ (E�V)2� q2. In the one-dimensional
limit when q is zero, Eqs. (14) and (15) can be written in terms
of the phase angle a in Eq. (12) as Y ¼ �i@X=@a and
X ¼ �i@Y=@a. These two relations may be combined to give

ð@2=@a2 þ 1ÞX ¼ ð@=@a� iÞð@=@aþ iÞX ¼ 0; (16)

with an identical equation for Y. This result reduces to the
pair of uncoupled left and right propagating waves found in
Sec. IV A and justifies the simplified, non-spinor analysis in
one dimension.

In the same spirit it is instructive to note that combining
Eqs. (14) and (15) leads to

ð@=@a� iÞð@=@aþ iÞX ¼ ð@b=@aþ b2ÞX; (17)

where b ¼ �hqVF=ðE� VðxÞÞ, which indicates the coupling
between left and right propagating solutions so that reflection
occurs in inhomogeneous potentials in two dimensions, and
therefore perfect Klein tunneling does not usually occur.
However, partial Klein tunneling does occur. It is straightfor-
ward to calculate the reflection coefficient for a potential
step that is zero for x< 0 and a constant V¼V0, for x � 0.
Then assuming that for x< 0, there is an incident wave with
wavenumber k and a reflected wave with wave number� k,
and that for x> 0, there is a transmitted wave with wave-
number, l, then the condition for the continuity of X is

1þ r ¼ t; (18)

where r and t are the relative amplitudes of the reflected and
transmitted waves, respectively. The corresponding relation
for the continuity of Y is

expði/Þ � r expð�i/Þ ¼ t expðihÞ; (19)

where tan h¼ q=l.
We note that / is essentially the particle’s angle of inci-

dence on the potential step. Hence, the reflection coefficient
R¼ |r|2 is

R ¼ 1� cosð/� hÞ
1þ cosð/þ hÞ ; (20)

as long as h< p=2. For /¼ 0, h¼ 0, and the one-dimensional
result is recovered and R¼ 0, whatever the value of V0. As /
increases from zero, R increases until / reaches p=2. For
V0<E, this occurs when sin / equals 1�V0=E, at which
point R reaches unity. For larger angles of incidence than this
critical one, R remains at unity and the transmitted wave
decays exponentially. For values of V0 between E and 2E, the
critical angle occurs when sin /¼V0=E� 1. For V0> 2E,
there is no critical angle, so that there is always some trans-
mission. For V0�E, Eq. (20) reduces to

R ¼ 1� cos /
1þ cos /

: (21)

Hence, even in infinite potentials Eq. (21) implies that reflec-
tion is only partial and there is Klein tunneling.

There is now a considerable literature on Klein tunneling,
both in the massless case3 as in graphene, as well as the mas-
sive relativistic case.4,9 Much of this literature is on step
potentials or square barriers. Quantum mechanical transmis-
sion and reflection of particles at potential steps and barriers
is a standard problem in introductory quantum mechanics
textbooks.10 However, step potentials are highly idealized
and have limited applications, and it is worthwhile to consider
more general inhomogeneous potentials. Smooth potentials
are more realistic than discontinuous steps and allow us to
explore the inhomogeneous potential problem without being
troubled by boundary conditions at discontinuities that can
sometimes lead to ambiguity and pathological results. In the
following, we investigate Klein tunneling in graphene in
smooth inhomogeneous potentials using numerical methods
to integrate the resulting differential equations. Hyperbolic
tangent functions provide suitable adjustable analytical poten-
tials of sufficient generality for this purpose.

Katsnelson et al.3 have recently studied Klein tunneling in
graphene using analytical methods with square potential bar-
riers of finite width. Their results provide a useful compari-
son for our smooth potential results. An appropriate
hyperbolic tangent form of a smooth potential takes the form

VðxÞ ¼ V0ðtanhððxþ L=2Þ=W1Þ
� tanhððx� L=2Þ=W2ÞÞÞ=2; (22)

where V0 is a constant that corresponds roughly to the barrier
maximum, L is the width of the barrier, and W1 and W2 the
respective rise and fall distance of the leading and trailing
edges of the barrier. L, W1, and W2 are scaled to the incident
electron wavelength. An example of this potential barrier is
illustrated in Fig. 3, for L¼ 2, W1¼ 0.2, and W2¼ 0.3. V(x)
from Eq. (22) is substituted into Eqs. (14) and (15), which
are then integrated numerically. It is assumed that a plane
wave propagates obliquely in the x-y plane, in the direction
of increasing x and y, from x equal to negative infinity to-
ward the potential barrier. This right propagating incident
wave excites a left propagating reflected wave as well as
continuing as a right propagating transmitted mode. Far from
the barrier, we assume there is a pair of left and right propa-
gating plane waves to the left of the barrier and a right propa-
gating plane wave to the right of it. All that is needed for the
input data for the integration of Eqs. (14) and (15) is con-
cerned is the choice of energy and the angle of incidence of
the electron. Integration is begun far enough to the right of
the barrier so that it can be assumed that the wave amplitude
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components X and Y are plane waves. At this distant point,
we assume X¼ 1, because the transmitted wave amplitude is
arbitrary at this stage. The plane wave assumption means
that Y is exp(i/), where / is the angle of incidence and is
given by tan /¼ q=k. The numerical integration of Eqs. (14)
and (15) is then straightforward. Once the amplitudes of X
and Y have been determined in this manner for x from� x0

toþ x0, where x0 is chosen to be many free electron wave-
lengths, the reflection and transmission coefficients may be
determined from X(�x0), X(�x0þ 2p=k), and X(þx0). For
details of the method, see the Appendix.

Figure 4 shows an example of a solution for the transmis-
sion coefficient as a function of the angle of incidence for
V0=E¼ 225=80, L¼ 2, W1¼ 0.05, and W2¼ 0.06 (solid
curve). Also displayed in Fig. 4 is the analytical solution
from Ref. 3 (dashed curve) for the square potential with the
same values of L and V0=E. It is clear from Fig. 4 that, de-
spite the fact that the smooth potential deviates only slightly
from a square potential, with the rise and fall distances of the
edges only small fractions of the electron wavelength, there
is a noticeable difference between the two results. The nu-
merical integration was also run with the values of both W1

and W2 reduced by a factor of ten. In this case the smooth
and square results were almost indistinguishable. This result
is a good test for the validity of the numerical solution.

The result in Fig. 4 is significant, because it implies that
unless the values of W1 and W2 are smaller than a few percent
of the free electron wavelength, the results of experiments on

Klein tunneling in graphene will depart significantly from
what is expected from the analytic calculations for idealized
square potentials.

Figure 5 shows another example with the potential and
width the same as in Fig. 4, but with an extremely asymmet-
ric barrier with W1¼ 0.005 and W2¼ 0.2. The result is an
even bigger discrepancy between the ideal square and the
smooth barriers.

V. COMMENTS

By representing the dependence of the electron dispersion
relation on the magnitude of the wavevector, we emphasized
the geometrical aspect of spinors rather than associating
them immediately with electron spin. Spinors and non-
commuting and non-anticommuting algebras arise in a sim-
pler way in the graphene context than in the way they were
originally introduced in the relativistic theory of the electron.
It is possible that spinor physics may be brought more easily
into the core physics curriculum graphene route from this
point of view.

Graphene sits at the crossroads of a number of important
phenomena and methodologies in quantum physics that in
some cases also have counterparts in classical physics. A
strong case has already been made for its role as an analogue
of relativistic dynamics and field theory. We speculate that it
might be possible for some other analogue for massive rela-
tivistic dynamics to be found. If graphene, with its gapless
characteristic can mimic massless fermions, can a situation
such as is found in the ground state of a superconductor,
where there exists an energy gap, be manipulated to mimic
massive particles? Mass is one of the most mysterious prop-
erties in nature and its origin remains the subject of much
speculation. We know that photons acquire mass in a
plasma11 and in waveguides,12 where they obey the massive
Klein-Gordon equation rather than the massless wave equa-
tion. It would be interesting to find a corresponding analogue
for massive fermions.
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Fig. 3. An example of a smooth potential profile of the form in Eq. (22),

with L¼ 2, W1¼ 0.2 and W2¼ 0.3.

Fig. 4. Transmission coefficients, T, as a function of the incidence angle for

two-dimensional scattering in graphene. The dashed curve represents the

square potential with V0=E¼ 225=80 and L¼ 2. The solid curve is a smooth

barrier with the same amplitude and width, with W1¼ 0.05 and W2¼ 0.06.

Fig. 5. Similar to Fig. 4, but with W1¼ 0.005 and W2¼ 0.2. There is a larger

difference between the dashed and continuous curves than in Fig. 4, showing

the effect of the weaker potential gradient (indicated by the larger W2) at the

trailing edge of the barrier, despite the sharper leading edge. In this case

there is extreme asymmetry between the leading and trailing edges of the

barrier.
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APPENDIX: CALCULATION OF REFLECTION

AND TRANSMISSION COEFFICIENTS

The reflection and transmission coefficients can be ob-
tained from numerical integration as follows. Having inte-
grated the appropriate wave equation, the field amplitude,
X(x), is known between x¼6x0, where x0 is many wave-
lengths away from the location of the inhomogeneities in the
potential. We now assume that far from the barrier along the
negative x-axis, there is field an incident wave U expðikxÞ
and a reflected wave, rU expð�ikxþ icÞ, where c is an arbi-
trary phase angle. We choose two points, x¼ x1 and x2, far
from the potential barrier. Then

q ¼ Xðx1Þ=Xðx2Þ ¼
expðikx1Þ þ r expðic� ikx1Þ
expðikx2Þ þ r expðic� ikx2Þ

: (A1)

Having ensured that kðx1 � x2Þ ¼ p=2, rearranging Eq. (A1)
gives

r expðicÞ ¼ � 1� iq
1þ iq

expð2ikx1Þ: (A2)

The reflection coefficient, R¼ r*r is thus

R ¼ ð1� iqÞð1þ iq�Þ
ð1þ iqÞð1� iq�Þ ; (A3)

which depends only on the known complex ratio,
q ¼ Xðx1Þ=Xðx2Þ.

The transmission coefficient, T¼ t*t can be found in a
similar way, if we recall that X(x0) was set to 1 as a boundary
condition, we have

t ¼ expðikx0 þ idÞ=U; (A4)

where d is another arbitrary phase angle. Because Xðx1Þ
¼ Uðexp ikx1 þ r expð�ikx1 þ icÞÞ, we have

T ¼ 4q � q
ð1þ iqÞð1� iq�Þ ðX � ðx1ÞXðx1ÞÞ�1

¼ 4ðX � ðx2ÞXðx2ÞÞ�1

ð1þ iqÞð1� iq�Þ : (A5)
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