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Size does matter
• A macroscopic magnet has two states:

• magnetized (uniform magnetization M),

• demagnetized (domains with different M).

• Domains separated by sharp domain walls.

• New physics on the nanoscale:

• domain walls don’t fit inside a small magnet,

• intricate continuous textures form instead.

• We’ll discuss properties of these textures.

• Fractional vortices, skyrmions, monopoles ahead!



Ferromagnetism basics

• Quantum exchange interaction:

• short-range,

• lines up spins parallel to each other.

• Crystalline anisotropies:

• short-range,

• lines up spins with crystalline axes.

• Dipolar interaction:

• long-range,

• discourages formation of magnetic charges.



Exchange

1

E = A
∫

sample
d3r |∇m̂|2, m̂ = M/M.

Exchange constant.

1

E = A
∫

sample
d3r |∇m̂|2, m̂ = M/M.

m̂ = const.Ground state: 

Spontaneously breaks the O(3) symmetry.

Scales as the linear size of the system.



Anisotropies

1

E = A
∫
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d3r |∇m̂|2, m̂ = M/M.

m̂ = const.

E = −K
∫

sample
d3r (m4

x + m4
y + m4

z).

Example: crystal with a cubic symmetry.

Crystal anisotropy + spin-orbit interaction.

Rotational symmetry is explicitly broken. 

Breaks the residual discrete group D2.

Ground state: 
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∫
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d3r |∇m̂|2, m̂ = M/M.
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E = −K
∫
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z).

m̂ = (±1, 0, 0), (0,±1, 0), (0, 0,±1).



Dipolar
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∫

all space
d3r H2.
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∫

all space
d3r H2.

∇ · B = 0 ⇒ ∇ · (H + M) = 0.

∇ · H = 4πρ, ρ = −∇ · M/4π.
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∫

sample
d3r d3r′ ρ(r)ρ(r′)

|r− r′|

Scales as the volume of the sample.



Comparing the energies

• Exchange: scales as sample length.

• Dipolar: scales as system volume.

• Hence H=0 (and ρ=0) in a large sample.

• Lines of M do not originate or terminate. 

• Cost of domain walls less than cost of H.



Magnetic domains in Fe

Domains of uniform M separated by 90° and 180° walls.



Magnetic domains in Fe

Domains of uniform M separated by 90° and 180° walls.

Exchange vs dipolar Exchange vs anisotropy

1

E = A
∫
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d3r |∇m̂|2, m̂ = M/M.

m̂ = const.
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m̂ = (±1, 0, 0), (0,±1, 0), (0, 0,±1).

E =
µ0

2

∫

all space
d3r H2.

∇ · B = 0 ⇒ ∇ · (H + M) = 0.

∇ · H = 4πρ, ρ = −∇ · M/4π.
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8π

∫

sample
d3r d3r′ ρ(r)ρ(r′)

|r− r′|

λ1 =
√

2A/µ0M2 ≈ 10 nm, λ2 =
√

A/K >∼ 100 nm.



Real Fe sample
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Fig. 6.17 SEMPA images of magnetization direction in (a) an amorphous ribbon, (b) a

Co/Cu mulitlayer, and (c) patterned Fe films. Relationship between color and direction is given 

by colorwheel. 
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Scanning electron microscopy, J. Unguris (2000).
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Fig.1 (above) SEMPA image of the magnetization di-

rection (color) and topography from the air side of an

as-cast amorphous ribbon. The magnetization direction

is color coded to the color wheel in the inset. The rib-

bon’s long axis is horizontal.

100 µm

Fig. 2 (above) SEMPA image of magnetization and to-

pography from the rough, wheel side of the same ribbon

in Fig. 1.
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Fig. 3 (above) Sample holder schematic shows the

closed loop ribbon sample and the magnetic circuit. The

top aperture plate  is not shown.

Fig. 4 (above) (a), (b), (c), and (d) are quasi-

staic SEMPA images of the magnetization direction

from various points along around the hysteresis curve

shown in (e). The hysteresis curve was acquired at a

higher frequency and is only representative of the true

curve. Some of the domain walls are pinned by the de-

fects shown in the topography image (f). The ribbon’s

long axis and the applied field direction is vertical in

d
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New physics 
on the nanoscale

• In submicron samples Eexchange ~ Edipolar.

• Anisotropy is small in amorphous alloys.

• Domain walls have internal structure,

• exhibit nontrivial dynamic behavior.



laxes from about 45° at the top and bottom edges of the
structure down to 32° along the center line.9!

As !m is reduced to nanoscale dimensions, the magneti-
zation response to the serrated edge drops rapidly. The image
of the 0.07 "m !m device in Fig. 1 almost seems faded or
washed out. This apparent lack of contrast is solely due to
the fact that the magnetization is becoming more uniform
along the long axis "yellow on the color wheel!. The blue
dotted and solid black lines represent where line scans were
extracted from the image data. These line scans are com-
pared in Fig. 3. The x axis on the line-scan data has been
normalized to the periodicity of the structures "2!m!, and
shows a significant drop in following the serrated edge; A
drops from 32° to only 15°.

This abrupt transition in magnetization behavior with de-
vice size is shown quantitatively in Fig. 4. Hollow circles
represent the SEMPA line-scan measurements of A as fit by
the sinusoidal curve. Linear fits were performed in two re-
gions, for data above a minimum feature size of 300 nm and
data below 200 nm. Though the data above !m of 1.5 "m are
cut off from the plot, they were included in the linear fit. We
define the critical length !cr as the intersection of the two fits.
The transition point occurs at 170±10 nm. Structures with
!m#!cr are strongly dominated by the exchange interaction.

To better understand how this transition point relates to
length scales defined by the exchange energy and magneto-
statics, we compare !cr with the typical domain wall width,
which can be calculated as

!dw = $#Aex/K .

Aex is the exchange stiffness "1.3%10−13 J /m for NiFe! and
K is the anisotropy of the element. It has been shown
previously10 that for a thin narrow stripe of width w and
thickness d, magnetization reversal can be appropriately pre-
dicted by modeling the anisotropy as

K $
3Ms

2d

2w
,

where Ms is the saturation magnetization. Therefore, !dw var-
ies as the square root of w. Although !dw describes a 180°
domain wall, we use this as an upper bound. If !dw "&#w! is
larger than !m "&w!, the magnetization can no longer effec-
tively respond to the edge structure. Using the cell width of

FIG. 1. "Color online! SEMPA images of 12 nm thick NiFe zigzag struc-
tures. The cell size was varied from 20%40 "m down to 100%200 nm. The
speck inside the blue circle at the upper right of the figure is a copy of the
bottom image to scale with the top structure. !m is the minimum feature
size. The blue dotted and solid black lines along the 1.4 and 0.07 "m !m
devices illustrate where line scans, which are shown in Fig. 3, were ex-
tracted from the image. The color wheel denotes the direction of the
magnetization.

FIG. 2. "Color online! The SEMPA image and line scan of a 1%2 "m cell
"!m=0.7 "m! structure. An arrow map overlay of the image shows the
magnetization direction, while the white solid line indicates where the line-
scan data were acquired. The average oscillation amplitude, A, of the mag-
netization direction is defined as the amplitude of a sinusoidal fit to the data.

FIG. 3. "Color online! Line scans from SEMPA images along the long axis
of 0.07 and 1.4 "m !m structures, showing how the ability of the magneti-
zation to follow the structure edge is diminished as device dimensions are
decreased.

FIG. 4. "Color online! A summary of the magnetization oscillation ampli-
tude as a function of the minimum feature size. The solid lines represent
linear fits to the data with !m above 300 nm and below 200 nm. The dotted
line represents micromagnetic simulations using an ideal zigzag structure.
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Scanning electron microscopy, W. C. Uhlig and J. Unguris, JAP (2006).



Memory based on
 magnetic nanorings



Memory based on
 magnetic nanorings

The switching involves
	 creation, propagation, and annihilation
	 	 of 2 domain walls



Numerical simulation.  J. G. Zhu et al. (2004).





DWs in a submicron strip

w < 1 μm



DWs in a submicron strip

?
What does a domain wall in a nanostrip look like?

w < 1 μm



Educated guess



Educated guess
• If a strip is narrow enough, it is a 1d object:

• M = M(x), rather than M(x,y).



Educated guess
• If a strip is narrow enough, it is a 1d object:

• M = M(x), rather than M(x,y).

• That works only when strip width < 10 nm.  

• If width >100 nm: positively 2d textures.



Educated guess
• If a strip is narrow enough, it is a 1d object:

• M = M(x), rather than M(x,y).

• That works only when strip width < 10 nm.  

• If width >100 nm: positively 2d textures.

Numerical simulation.  McMichael and Donahue (1997).



Topological defects
in thin magnetic films
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FIG. 2: Numerical simulation of magnetization dynamics in a permalloy disk. Color encodes the direction of the field m̂ (also
shown by arrows). Convergence of different colors at a point signals the presence of a topological defect. In the first three
panels the disk contains two +1 vortices and two −

1

2
edge defects. After the edge defects and a vortex mutually annihilate

(last panel), a single vortex remains.

In the magnetostatic regime wt ! λ2, the defects can
again be constructed explicitly [13]. The magnetostatic
energy is minimized if the density of magnetic charges
vanishes in the bulk, ∇ · m̂ = 0, and on the surface,
m̂ = ±τ̂ . It can be checked that the +1 vortex in the
bulk retains its shape [Fig. 1(c)]. The − 1

2
edge defect

looks like two domain walls emanating from a point at the
edge in orthogonal directions [Fig. 1(e)]. The −1 vortex is
a similar intersection of four domain walls. The V-shaped
− 1

2
edge defects can be seen in numerical simulations [9].

Domain walls in this limit are made of two − 1
2

defects
and a +1 vortex between them [13]. This type of the
domain wall is favored when wt >

∼ Cλ2, where C ≈ 130 is
a rather large numerical parameter [9] weakly dependent
on the thickness t.

Although different in shape, the − 1
2

edge defects in the
exchange [Fig. 1(b)] and magnetostatic [Fig. 1(e)] limits

have identical topological properties. Generally, as long
as magnetization tends to align itself with the boundary,
the edge defects are stable. They are manifested as kinks
in magnetization m̂: the latter rotates along the edge
between the local tangential directions +τ̂ and −τ̂ . The
winding number of a kink is defined as the line integral
along the boundary:

n = −
1

2π

∫

∂Ω

∇(θ − θτ ) · dr = ±
1

2
(7)

for a single edge defect. Because the boundary ∂Ω is a
closed line, it always contains an even number of kinks.
The sum of the winding numbers of edge defects is thus
an integer related to the topological charge of bulk de-
fects. In a simply connected (no holes) region Ω,

edge
∑

i

ni = 1 −
1

2π

∮

∂Ω

∇θ · dr = 1 −
1

2π

∫

Ω

(∂x∂yθ − ∂y∂xθ) d2r = 1 −
bulk
∑

i

ni, (8)

with integer ni for bulk defects. In a film with g holes,

∑

i

ni = 1 − g. (9)

The winding numbers are ±1 for bulk defects and ± 1
2

for
edge defects. The half-integer value of the topological
charge is directly related to the presence of a kink in
magnetization at the edge [14–16]. The halfvortices are
analogs of the boojums thought to exist at an interface
between the A and B phases of superfluid 3He [17, 18].

Conservation of topological charge (9) has important
implications for the dynamics of magnetization in nano-
magnets. For example, in rings of certain sizes the ground

state contains no topological defects and has zero mag-
netic dipole moment [Fig. 3(a)]. The ring can be mag-
netized by applying a strong in-plane magnetic field.
Switching off the field leaves the ring in a metastable
state with remnant magnetization containing two com-
posite domain walls [Fig. 3(b)]. By applying the mag-
netic field in the opposite direction, the walls can be set
in motion on a collision course and may annihilate, leav-
ing the magnet in a ground state [5]. However, direct
annihilation of the two domain walls is impossible: both
walls have the − 1

2
defects at the inner edge of the ring

and two such defects cannot annihilate on their own. Ac-
cordingly, in thin and narrow rings the two domain walls



Topological defects
in thin magnetic films

• Thickness is the shortest geometrical size.
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looks like two domain walls emanating from a point at the
edge in orthogonal directions [Fig. 1(e)]. The −1 vortex is
a similar intersection of four domain walls. The V-shaped
− 1

2
edge defects can be seen in numerical simulations [9].

Domain walls in this limit are made of two − 1
2

defects
and a +1 vortex between them [13]. This type of the
domain wall is favored when wt >

∼ Cλ2, where C ≈ 130 is
a rather large numerical parameter [9] weakly dependent
on the thickness t.

Although different in shape, the − 1
2

edge defects in the
exchange [Fig. 1(b)] and magnetostatic [Fig. 1(e)] limits

have identical topological properties. Generally, as long
as magnetization tends to align itself with the boundary,
the edge defects are stable. They are manifested as kinks
in magnetization m̂: the latter rotates along the edge
between the local tangential directions +τ̂ and −τ̂ . The
winding number of a kink is defined as the line integral
along the boundary:

n = −
1

2π

∫

∂Ω

∇(θ − θτ ) · dr = ±
1

2
(7)

for a single edge defect. Because the boundary ∂Ω is a
closed line, it always contains an even number of kinks.
The sum of the winding numbers of edge defects is thus
an integer related to the topological charge of bulk de-
fects. In a simply connected (no holes) region Ω,

edge
∑

i

ni = 1 −
1

2π

∮

∂Ω

∇θ · dr = 1 −
1
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∫

Ω

(∂x∂yθ − ∂y∂xθ) d2r = 1 −
bulk
∑
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ni, (8)

with integer ni for bulk defects. In a film with g holes,

∑

i

ni = 1 − g. (9)

The winding numbers are ±1 for bulk defects and ± 1
2

for
edge defects. The half-integer value of the topological
charge is directly related to the presence of a kink in
magnetization at the edge [14–16]. The halfvortices are
analogs of the boojums thought to exist at an interface
between the A and B phases of superfluid 3He [17, 18].

Conservation of topological charge (9) has important
implications for the dynamics of magnetization in nano-
magnets. For example, in rings of certain sizes the ground

state contains no topological defects and has zero mag-
netic dipole moment [Fig. 3(a)]. The ring can be mag-
netized by applying a strong in-plane magnetic field.
Switching off the field leaves the ring in a metastable
state with remnant magnetization containing two com-
posite domain walls [Fig. 3(b)]. By applying the mag-
netic field in the opposite direction, the walls can be set
in motion on a collision course and may annihilate, leav-
ing the magnet in a ground state [5]. However, direct
annihilation of the two domain walls is impossible: both
walls have the − 1

2
defects at the inner edge of the ring

and two such defects cannot annihilate on their own. Ac-
cordingly, in thin and narrow rings the two domain walls
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FIG. 2: Numerical simulation of magnetization dynamics in a permalloy disk. Color encodes the direction of the field m̂ (also
shown by arrows). Convergence of different colors at a point signals the presence of a topological defect. In the first three
panels the disk contains two +1 vortices and two −

1

2
edge defects. After the edge defects and a vortex mutually annihilate

(last panel), a single vortex remains.

In the magnetostatic regime wt ! λ2, the defects can
again be constructed explicitly [13]. The magnetostatic
energy is minimized if the density of magnetic charges
vanishes in the bulk, ∇ · m̂ = 0, and on the surface,
m̂ = ±τ̂ . It can be checked that the +1 vortex in the
bulk retains its shape [Fig. 1(c)]. The − 1

2
edge defect

looks like two domain walls emanating from a point at the
edge in orthogonal directions [Fig. 1(e)]. The −1 vortex is
a similar intersection of four domain walls. The V-shaped
− 1

2
edge defects can be seen in numerical simulations [9].

Domain walls in this limit are made of two − 1
2

defects
and a +1 vortex between them [13]. This type of the
domain wall is favored when wt >

∼ Cλ2, where C ≈ 130 is
a rather large numerical parameter [9] weakly dependent
on the thickness t.

Although different in shape, the − 1
2

edge defects in the
exchange [Fig. 1(b)] and magnetostatic [Fig. 1(e)] limits

have identical topological properties. Generally, as long
as magnetization tends to align itself with the boundary,
the edge defects are stable. They are manifested as kinks
in magnetization m̂: the latter rotates along the edge
between the local tangential directions +τ̂ and −τ̂ . The
winding number of a kink is defined as the line integral
along the boundary:

n = −
1

2π

∫

∂Ω

∇(θ − θτ ) · dr = ±
1

2
(7)

for a single edge defect. Because the boundary ∂Ω is a
closed line, it always contains an even number of kinks.
The sum of the winding numbers of edge defects is thus
an integer related to the topological charge of bulk de-
fects. In a simply connected (no holes) region Ω,

edge
∑

i

ni = 1 −
1

2π

∮

∂Ω

∇θ · dr = 1 −
1
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∫

Ω

(∂x∂yθ − ∂y∂xθ) d2r = 1 −
bulk
∑
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ni, (8)

with integer ni for bulk defects. In a film with g holes,

∑

i

ni = 1 − g. (9)

The winding numbers are ±1 for bulk defects and ± 1
2

for
edge defects. The half-integer value of the topological
charge is directly related to the presence of a kink in
magnetization at the edge [14–16]. The halfvortices are
analogs of the boojums thought to exist at an interface
between the A and B phases of superfluid 3He [17, 18].

Conservation of topological charge (9) has important
implications for the dynamics of magnetization in nano-
magnets. For example, in rings of certain sizes the ground

state contains no topological defects and has zero mag-
netic dipole moment [Fig. 3(a)]. The ring can be mag-
netized by applying a strong in-plane magnetic field.
Switching off the field leaves the ring in a metastable
state with remnant magnetization containing two com-
posite domain walls [Fig. 3(b)]. By applying the mag-
netic field in the opposite direction, the walls can be set
in motion on a collision course and may annihilate, leav-
ing the magnet in a ground state [5]. However, direct
annihilation of the two domain walls is impossible: both
walls have the − 1

2
defects at the inner edge of the ring

and two such defects cannot annihilate on their own. Ac-
cordingly, in thin and narrow rings the two domain walls
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shown by arrows). Convergence of different colors at a point signals the presence of a topological defect. In the first three
panels the disk contains two +1 vortices and two −

1

2
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In the magnetostatic regime wt ! λ2, the defects can
again be constructed explicitly [13]. The magnetostatic
energy is minimized if the density of magnetic charges
vanishes in the bulk, ∇ · m̂ = 0, and on the surface,
m̂ = ±τ̂ . It can be checked that the +1 vortex in the
bulk retains its shape [Fig. 1(c)]. The − 1

2
edge defect

looks like two domain walls emanating from a point at the
edge in orthogonal directions [Fig. 1(e)]. The −1 vortex is
a similar intersection of four domain walls. The V-shaped
− 1

2
edge defects can be seen in numerical simulations [9].

Domain walls in this limit are made of two − 1
2

defects
and a +1 vortex between them [13]. This type of the
domain wall is favored when wt >

∼ Cλ2, where C ≈ 130 is
a rather large numerical parameter [9] weakly dependent
on the thickness t.

Although different in shape, the − 1
2

edge defects in the
exchange [Fig. 1(b)] and magnetostatic [Fig. 1(e)] limits

have identical topological properties. Generally, as long
as magnetization tends to align itself with the boundary,
the edge defects are stable. They are manifested as kinks
in magnetization m̂: the latter rotates along the edge
between the local tangential directions +τ̂ and −τ̂ . The
winding number of a kink is defined as the line integral
along the boundary:

n = −
1

2π

∫

∂Ω

∇(θ − θτ ) · dr = ±
1

2
(7)

for a single edge defect. Because the boundary ∂Ω is a
closed line, it always contains an even number of kinks.
The sum of the winding numbers of edge defects is thus
an integer related to the topological charge of bulk de-
fects. In a simply connected (no holes) region Ω,
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∑
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ni = 1 −
1
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∮
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∇θ · dr = 1 −
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∫
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(∂x∂yθ − ∂y∂xθ) d2r = 1 −
bulk
∑

i

ni, (8)

with integer ni for bulk defects. In a film with g holes,

∑

i

ni = 1 − g. (9)

The winding numbers are ±1 for bulk defects and ± 1
2

for
edge defects. The half-integer value of the topological
charge is directly related to the presence of a kink in
magnetization at the edge [14–16]. The halfvortices are
analogs of the boojums thought to exist at an interface
between the A and B phases of superfluid 3He [17, 18].

Conservation of topological charge (9) has important
implications for the dynamics of magnetization in nano-
magnets. For example, in rings of certain sizes the ground

state contains no topological defects and has zero mag-
netic dipole moment [Fig. 3(a)]. The ring can be mag-
netized by applying a strong in-plane magnetic field.
Switching off the field leaves the ring in a metastable
state with remnant magnetization containing two com-
posite domain walls [Fig. 3(b)]. By applying the mag-
netic field in the opposite direction, the walls can be set
in motion on a collision course and may annihilate, leav-
ing the magnet in a ground state [5]. However, direct
annihilation of the two domain walls is impossible: both
walls have the − 1

2
defects at the inner edge of the ring

and two such defects cannot annihilate on their own. Ac-
cordingly, in thin and narrow rings the two domain walls
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FIG. 2: Numerical simulation of magnetization dynamics in a permalloy disk. Color encodes the direction of the field m̂ (also
shown by arrows). Convergence of different colors at a point signals the presence of a topological defect. In the first three
panels the disk contains two +1 vortices and two −

1

2
edge defects. After the edge defects and a vortex mutually annihilate

(last panel), a single vortex remains.

In the magnetostatic regime wt ! λ2, the defects can
again be constructed explicitly [13]. The magnetostatic
energy is minimized if the density of magnetic charges
vanishes in the bulk, ∇ · m̂ = 0, and on the surface,
m̂ = ±τ̂ . It can be checked that the +1 vortex in the
bulk retains its shape [Fig. 1(c)]. The − 1

2
edge defect

looks like two domain walls emanating from a point at the
edge in orthogonal directions [Fig. 1(e)]. The −1 vortex is
a similar intersection of four domain walls. The V-shaped
− 1

2
edge defects can be seen in numerical simulations [9].

Domain walls in this limit are made of two − 1
2

defects
and a +1 vortex between them [13]. This type of the
domain wall is favored when wt >

∼ Cλ2, where C ≈ 130 is
a rather large numerical parameter [9] weakly dependent
on the thickness t.

Although different in shape, the − 1
2

edge defects in the
exchange [Fig. 1(b)] and magnetostatic [Fig. 1(e)] limits

have identical topological properties. Generally, as long
as magnetization tends to align itself with the boundary,
the edge defects are stable. They are manifested as kinks
in magnetization m̂: the latter rotates along the edge
between the local tangential directions +τ̂ and −τ̂ . The
winding number of a kink is defined as the line integral
along the boundary:

n = −
1

2π

∫

∂Ω

∇(θ − θτ ) · dr = ±
1

2
(7)

for a single edge defect. Because the boundary ∂Ω is a
closed line, it always contains an even number of kinks.
The sum of the winding numbers of edge defects is thus
an integer related to the topological charge of bulk de-
fects. In a simply connected (no holes) region Ω,

edge
∑

i

ni = 1 −
1

2π

∮
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∇θ · dr = 1 −
1

2π

∫

Ω

(∂x∂yθ − ∂y∂xθ) d2r = 1 −
bulk
∑

i

ni, (8)

with integer ni for bulk defects. In a film with g holes,

∑

i

ni = 1 − g. (9)

The winding numbers are ±1 for bulk defects and ± 1
2

for
edge defects. The half-integer value of the topological
charge is directly related to the presence of a kink in
magnetization at the edge [14–16]. The halfvortices are
analogs of the boojums thought to exist at an interface
between the A and B phases of superfluid 3He [17, 18].

Conservation of topological charge (9) has important
implications for the dynamics of magnetization in nano-
magnets. For example, in rings of certain sizes the ground

state contains no topological defects and has zero mag-
netic dipole moment [Fig. 3(a)]. The ring can be mag-
netized by applying a strong in-plane magnetic field.
Switching off the field leaves the ring in a metastable
state with remnant magnetization containing two com-
posite domain walls [Fig. 3(b)]. By applying the mag-
netic field in the opposite direction, the walls can be set
in motion on a collision course and may annihilate, leav-
ing the magnet in a ground state [5]. However, direct
annihilation of the two domain walls is impossible: both
walls have the − 1

2
defects at the inner edge of the ring

and two such defects cannot annihilate on their own. Ac-
cordingly, in thin and narrow rings the two domain walls
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FIG. 2: Numerical simulation of magnetization dynamics in a permalloy disk. Color encodes the direction of the field m̂ (also
shown by arrows). Convergence of different colors at a point signals the presence of a topological defect. In the first three
panels the disk contains two +1 vortices and two −

1

2
edge defects. After the edge defects and a vortex mutually annihilate

(last panel), a single vortex remains.

In the magnetostatic regime wt ! λ2, the defects can
again be constructed explicitly [13]. The magnetostatic
energy is minimized if the density of magnetic charges
vanishes in the bulk, ∇ · m̂ = 0, and on the surface,
m̂ = ±τ̂ . It can be checked that the +1 vortex in the
bulk retains its shape [Fig. 1(c)]. The − 1

2
edge defect

looks like two domain walls emanating from a point at the
edge in orthogonal directions [Fig. 1(e)]. The −1 vortex is
a similar intersection of four domain walls. The V-shaped
− 1

2
edge defects can be seen in numerical simulations [9].

Domain walls in this limit are made of two − 1
2

defects
and a +1 vortex between them [13]. This type of the
domain wall is favored when wt >

∼ Cλ2, where C ≈ 130 is
a rather large numerical parameter [9] weakly dependent
on the thickness t.

Although different in shape, the − 1
2

edge defects in the
exchange [Fig. 1(b)] and magnetostatic [Fig. 1(e)] limits

have identical topological properties. Generally, as long
as magnetization tends to align itself with the boundary,
the edge defects are stable. They are manifested as kinks
in magnetization m̂: the latter rotates along the edge
between the local tangential directions +τ̂ and −τ̂ . The
winding number of a kink is defined as the line integral
along the boundary:

n = −
1

2π

∫

∂Ω

∇(θ − θτ ) · dr = ±
1

2
(7)

for a single edge defect. Because the boundary ∂Ω is a
closed line, it always contains an even number of kinks.
The sum of the winding numbers of edge defects is thus
an integer related to the topological charge of bulk de-
fects. In a simply connected (no holes) region Ω,

edge
∑
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ni = 1 −
1

2π

∮
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∇θ · dr = 1 −
1

2π

∫

Ω

(∂x∂yθ − ∂y∂xθ) d2r = 1 −
bulk
∑

i

ni, (8)

with integer ni for bulk defects. In a film with g holes,

∑

i

ni = 1 − g. (9)

The winding numbers are ±1 for bulk defects and ± 1
2

for
edge defects. The half-integer value of the topological
charge is directly related to the presence of a kink in
magnetization at the edge [14–16]. The halfvortices are
analogs of the boojums thought to exist at an interface
between the A and B phases of superfluid 3He [17, 18].

Conservation of topological charge (9) has important
implications for the dynamics of magnetization in nano-
magnets. For example, in rings of certain sizes the ground

state contains no topological defects and has zero mag-
netic dipole moment [Fig. 3(a)]. The ring can be mag-
netized by applying a strong in-plane magnetic field.
Switching off the field leaves the ring in a metastable
state with remnant magnetization containing two com-
posite domain walls [Fig. 3(b)]. By applying the mag-
netic field in the opposite direction, the walls can be set
in motion on a collision course and may annihilate, leav-
ing the magnet in a ground state [5]. However, direct
annihilation of the two domain walls is impossible: both
walls have the − 1

2
defects at the inner edge of the ring

and two such defects cannot annihilate on their own. Ac-
cordingly, in thin and narrow rings the two domain walls
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FIG. 2: Numerical simulation of magnetization dynamics in a permalloy disk. Color encodes the direction of the field m̂ (also
shown by arrows). Convergence of different colors at a point signals the presence of a topological defect. In the first three
panels the disk contains two +1 vortices and two −

1

2
edge defects. After the edge defects and a vortex mutually annihilate

(last panel), a single vortex remains.

In the magnetostatic regime wt ! λ2, the defects can
again be constructed explicitly [13]. The magnetostatic
energy is minimized if the density of magnetic charges
vanishes in the bulk, ∇ · m̂ = 0, and on the surface,
m̂ = ±τ̂ . It can be checked that the +1 vortex in the
bulk retains its shape [Fig. 1(c)]. The − 1

2
edge defect

looks like two domain walls emanating from a point at the
edge in orthogonal directions [Fig. 1(e)]. The −1 vortex is
a similar intersection of four domain walls. The V-shaped
− 1

2
edge defects can be seen in numerical simulations [9].

Domain walls in this limit are made of two − 1
2

defects
and a +1 vortex between them [13]. This type of the
domain wall is favored when wt >

∼ Cλ2, where C ≈ 130 is
a rather large numerical parameter [9] weakly dependent
on the thickness t.

Although different in shape, the − 1
2

edge defects in the
exchange [Fig. 1(b)] and magnetostatic [Fig. 1(e)] limits

have identical topological properties. Generally, as long
as magnetization tends to align itself with the boundary,
the edge defects are stable. They are manifested as kinks
in magnetization m̂: the latter rotates along the edge
between the local tangential directions +τ̂ and −τ̂ . The
winding number of a kink is defined as the line integral
along the boundary:

n = −
1

2π

∫

∂Ω

∇(θ − θτ ) · dr = ±
1

2
(7)

for a single edge defect. Because the boundary ∂Ω is a
closed line, it always contains an even number of kinks.
The sum of the winding numbers of edge defects is thus
an integer related to the topological charge of bulk de-
fects. In a simply connected (no holes) region Ω,

edge
∑

i

ni = 1 −
1

2π

∮
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∇θ · dr = 1 −
1
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∫

Ω

(∂x∂yθ − ∂y∂xθ) d2r = 1 −
bulk
∑

i

ni, (8)

with integer ni for bulk defects. In a film with g holes,

∑

i

ni = 1 − g. (9)

The winding numbers are ±1 for bulk defects and ± 1
2

for
edge defects. The half-integer value of the topological
charge is directly related to the presence of a kink in
magnetization at the edge [14–16]. The halfvortices are
analogs of the boojums thought to exist at an interface
between the A and B phases of superfluid 3He [17, 18].

Conservation of topological charge (9) has important
implications for the dynamics of magnetization in nano-
magnets. For example, in rings of certain sizes the ground

state contains no topological defects and has zero mag-
netic dipole moment [Fig. 3(a)]. The ring can be mag-
netized by applying a strong in-plane magnetic field.
Switching off the field leaves the ring in a metastable
state with remnant magnetization containing two com-
posite domain walls [Fig. 3(b)]. By applying the mag-
netic field in the opposite direction, the walls can be set
in motion on a collision course and may annihilate, leav-
ing the magnet in a ground state [5]. However, direct
annihilation of the two domain walls is impossible: both
walls have the − 1

2
defects at the inner edge of the ring

and two such defects cannot annihilate on their own. Ac-
cordingly, in thin and narrow rings the two domain walls
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FIG. 2: Numerical simulation of magnetization dynamics in a permalloy disk. Color encodes the direction of the field m̂ (also
shown by arrows). Convergence of different colors at a point signals the presence of a topological defect. In the first three
panels the disk contains two +1 vortices and two −

1

2
edge defects. After the edge defects and a vortex mutually annihilate

(last panel), a single vortex remains.

In the magnetostatic regime wt ! λ2, the defects can
again be constructed explicitly [13]. The magnetostatic
energy is minimized if the density of magnetic charges
vanishes in the bulk, ∇ · m̂ = 0, and on the surface,
m̂ = ±τ̂ . It can be checked that the +1 vortex in the
bulk retains its shape [Fig. 1(c)]. The − 1

2
edge defect

looks like two domain walls emanating from a point at the
edge in orthogonal directions [Fig. 1(e)]. The −1 vortex is
a similar intersection of four domain walls. The V-shaped
− 1

2
edge defects can be seen in numerical simulations [9].

Domain walls in this limit are made of two − 1
2

defects
and a +1 vortex between them [13]. This type of the
domain wall is favored when wt >

∼ Cλ2, where C ≈ 130 is
a rather large numerical parameter [9] weakly dependent
on the thickness t.

Although different in shape, the − 1
2

edge defects in the
exchange [Fig. 1(b)] and magnetostatic [Fig. 1(e)] limits

have identical topological properties. Generally, as long
as magnetization tends to align itself with the boundary,
the edge defects are stable. They are manifested as kinks
in magnetization m̂: the latter rotates along the edge
between the local tangential directions +τ̂ and −τ̂ . The
winding number of a kink is defined as the line integral
along the boundary:

n = −
1

2π

∫

∂Ω

∇(θ − θτ ) · dr = ±
1

2
(7)

for a single edge defect. Because the boundary ∂Ω is a
closed line, it always contains an even number of kinks.
The sum of the winding numbers of edge defects is thus
an integer related to the topological charge of bulk de-
fects. In a simply connected (no holes) region Ω,

edge
∑

i

ni = 1 −
1
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∇θ · dr = 1 −
1
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∫

Ω
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vanishes in the bulk, ∇ · m̂ = 0, and on the surface,
m̂ = ±τ̂ . It can be checked that the +1 vortex in the
bulk retains its shape [Fig. 1(c)]. The − 1
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the edge defects are stable. They are manifested as kinks
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vanishes in the bulk, ∇ · m̂ = 0, and on the surface,
m̂ = ±τ̂ . It can be checked that the +1 vortex in the
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again be constructed explicitly [13]. The magnetostatic
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vanishes in the bulk, ∇ · m̂ = 0, and on the surface,
m̂ = ±τ̂ . It can be checked that the +1 vortex in the
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looks like two domain walls emanating from a point at the
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edge defects can be seen in numerical simulations [9].

Domain walls in this limit are made of two − 1
2

defects
and a +1 vortex between them [13]. This type of the
domain wall is favored when wt >

∼ Cλ2, where C ≈ 130 is
a rather large numerical parameter [9] weakly dependent
on the thickness t.

Although different in shape, the − 1
2

edge defects in the
exchange [Fig. 1(b)] and magnetostatic [Fig. 1(e)] limits

have identical topological properties. Generally, as long
as magnetization tends to align itself with the boundary,
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Mathematically speaking...
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Mathematically speaking...
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Analogs of boojums in 3He.230 MONOPOLES AND BOOJUMS
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Fig. 17.11. Simplest realization of the Alice string at the interface. On the
A-phase side it is the spin vortex in the d̂-field with ν = 1/2, while on the
B-phase side it is the mass vortex with n1 = 1/2.

interface and lives there, is not determined by topology, but by the energetics of
vortices on different sides of the interface. Let us recall that in the bulk A-phase,
the Alice string is the combination of the mass vortex with n1 = 1/2 and spin
vortex with ν = 1/2. This allows us to construct the simplest representation of
the Alice string lying at the interface:

eαi(x < 0) = ∆A (x̂α sinφ − ŷα cos φ) (x̂i + iŷi) , (17.18)
eαi(x > 0) = −i∆Bδαie

iφ . (17.19)

Here the vortex line and the l̂-vector are along the z axis. In this construction,
the change of sign of the order parameter due to the reorientation of the d̂-vector
on the A-phase side is compensated by the change of the phase Φ on the B-phase
side. As a result the mass-current part of the string is on the B-phase side of
the interface, where the phase ΦB = φ − π/2 changes from −π to 0, while the
spin-current part of the string is on the A-phase side, i.e. at x < 0 (Fig. 17.11).
In the real Alicie string the spin and mass currents are present in both phases
due to the conservation law for the mass and spin:

eαiA = ∆A (x̂α sin((1 − a)φ) − ŷα cos((1 − a)φ)) (x̂i + iŷi)eibφ, (17.20)
eαiB = −i∆BRαi(ẑ, aφ)ei(1−b)φ. (17.21)

Parameters a and b of the string can be determined from the minimization
of the London energy. In the BCS model at T = 0, eqns (14.6) and (15.19) give
the following energy densities in the A- and B-phases:

G. E. Volovik, Universe in a Helium Droplet (2003).



What about domain walls?

• DWs in nanostrips are composite objects.

• Basic rules for putting together a DW:

• one halfvortex at each edge (or an odd number),

• total winding number of a wall is 0.

• Examples:  

• +1/2 −1/2 = 0.

• −1/2 −1/2 +1 = 0.

?
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“Transverse” wall
+1/2

−1/2

• Most economical (fewest defects).

• Seen in thin and narrow strips (< 50 nm).

• Becomes 1d kink as strip width → 0:
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8π
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|r− r′|

λ1 =
√

2A/µ0M2 ≈ 10 nm, λ2 =
√

A/K >∼ 100 nm.

∑

i

ni = 1− g.

+1 + 1− 1/2− 1/2 = +1.

n = − 1

2π

∫

edge
∇(φ− φe) · dr = ±1

2
.

cos φ(x, y) = tanh x/λ.
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“Vortex” wall
−1/2

−1/2

• Seen in thicker and wider strips.

• Most economical if +1/2 defects “forbidden.”

• +1/2 has magnetic charge ⇒ high dipolar energy.



An exotic wall
−1/2 −1/2 −1/2

−1/2
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8π
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√
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√
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+1 + 1− 1/2− 1/2 = +1.
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2π

∫
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∇(φ− φe) · dr = ±1

2
.

cos φ(x, y) = tanh x/λ.

4× (−1/2) + 2× (+1) = 0.

Transient state far out of equilibrium.



Summary: DW statics

• DWs in nanostrips are composite objects...

• ...made from integer and fractional vortices...

• ...following simple topological rules.

• Typical makeup of a domain wall:

• +1/2 and −1/2 edge defects,

• 2×(−1/2) edge defects, +1 bulk vortex.

• other compositions are metastable states.
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DW dynamics

• DWs in nanostrips carry magnetic charge,

• hence can be moved by applying magn. field.

• Even a weak field (20 Oe) can do that!

• (Spin) current can, too.  Less efficient.



Weak field: viscous motion

• DW moves steadily, slightly deformed.

• Speed is set by rate of energy dissipation:

XY

Z

∇
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m̂ = (±1, 0, 0), (0,±1, 0), (0, 0,±1).

E =
µ0

2

∫

all space
d3r H2.
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√
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n = − 1
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2
.

cos φ(x, y) = tanh x/λ.

4× (−1/2) + 2× (+1) = 0.

∑

i

F x
i − Γvx = 0.

DW viscosity



Stronger field: complex motion

• Periodic creation, annihilation of ±1 vortices.

• Viscous motion if no ±1 vortex is present.

• Oscillations in the presence of a ±1 vortex.
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Stronger field: complex motion

• Periodic creation, annihilation of ±1 vortices.

• Viscous motion if no ±1 vortex is present.

• Oscillations in the presence of a ±1 vortex.

XY

Z

∇

⇐



 

Underdamped regime

• Gyrotropic force: 

• acts on bulk vortices (±1),

• has a topological origin,

• overwhelms the viscous force.

• Vortex absent: viscous motion downhill.

• Vortex present: motion along equipotential lines.
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.

cos φ(x, y) = tanh x/λ.

4× (−1/2) + 2× (+1) = 0.

∑

i

F x
i − Γvx = 0.

∑

i

Fi − Γv + G× v = 0, G' Γ.
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K. Yu. Guslienko (2007); O. T. (2007).
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G× v = ∇U, ⇒ U(x, y) = const.
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vy = 2HMw/G, t = w/|vy| = π/γH.Crossing time = half a period of Larmor precession.
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Vortex core: a close-up

M points out of the plane (↑ or ↓) at the core (≈10 nm).

A. Wachowiack et al., Science (2002).



Topological nature of gyroforce

A. A. Belavin and A. M. Polyakov (1975).
E. Feldtkeller (1965);  A. A. Thiele (1973).
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• q is the skyrmion number, a conserved charge. 

• Counts how many times M wraps on the sphere.

2

4× (−1/2) + 2× (+1) = 0.

∑

i

F x
i − Γvx = 0.

∑

i

Fi − Γv + G× v = 0, G# Γ.

q =
1

8π

∫
d2r εij m̂ · (∂im̂× ∂jm̂) = np/2,

p = Mz(0)/|Mz(0)| = ±1

2

4× (−1/2) + 2× (+1) = 0.

∑

i

F x
i − Γvx = 0.

∑

i

Fi − Γv + G× v = 0, G# Γ.

Fgyro = G× v = 4πJq ẑ× v,
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• q is the skyrmion number, a conserved charge. 

• Counts how many times M wraps on the sphere.

• Vortex with core ↑ covers Northern hemisphere (+1/2).
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Topological nature of gyroforce

A. A. Belavin and A. M. Polyakov (1975).
E. Feldtkeller (1965);  A. A. Thiele (1973).

• q is the skyrmion number, a conserved charge. 

• Counts how many times M wraps on the sphere.

• Vortex with core ↑ covers Northern hemisphere (+1/2).

• Vortex with core ↓ covers Southern hemisphere (−1/2).
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Skyrmion charge of a vortex
+1/2 +1/2

−1/2 −1/2

Skyrmion charge = vorticity × polarization / 2



Observing gyrotropic effects

B. Van Waeyenberge et al., Nature (2006).

1.5 μm

X-ray dichroism provides real-time info about M.



Gyrating vortex

q = +1/2



Gyrating vortex

q = +1/2



Gyrating vortex

q = +1/2

The skyrmion number has changed!

q = −1/2





Flipping the core

Numerical simulation



Direct core flipping

of increasing radius. All calculation cells are scanned and

their volume contained within the sphere evaluated. The ex-

change energy embedded in the sphere is then obtained as

the sum over all cells of their local exchange energy density

times the contained volume. The local exchange energy den-

sity is given by the Heisenberg term summed over all next

nearest neighbors !as a check, we also recalculated the ex-
change energy using a five point polynomial interpolation

method in each direction,22 and obtained a value of BP ex-

change energy lower by only 2!10"20 J). Figure 2 is a plot

of this local exchange energy versus the radius of the sphere,

for a disk diameter of 200 nm and a thickness of 50 nm. All

curves show three regions. For a radius below one mesh size,

the exchange energy rises very slowly !as the volume of the
sphere". This is a consequence of the nonzero mesh param-
eter, and of the way we chose to evaluate local exchange

energy. In an intermediate regime, the exchange energy rises

linearly. The slope is that of the analytic relation !2", with a
lateral offset that proves equal to 0.65d . Finally the energy

saturates at a larger radius, meaning that the BP embedded in

a vortex has a given size. The typical radius of the BP struc-

ture is 10 nm, in agreement with the parameter b found when

using the analytical structure !6". For a radius larger than 20
nm !at this thickness", the BP exchange energy decreases a
little so as to reach the total energy values shown in Table I.

In this regime the sphere is partly out of the sample, and one

also probes the flux closure region far away from the core.

Thus, the local evaluation of the exchange energy is probably

more adapted to the study of the mechanism of BP injection.

Figure 2 also displays a linear extrapolation of the ex-

change energy profiles to zero mesh size, obtained by adding

an energy 4#A(0.65d) to the three computed profiles !with
d#4 nm in the larger mesh case". The extrapolated profiles
merge tangentially into the analytical one at about 5 nm, and

are above it for low R because a constant was added. These

plots show directly that, roughly speaking, the numerical cal-

culations miss the part of the exchange energy that corre-

sponds to a radius R$0.65d . Moreover, this proves that the
analytic theory describes well the vicinity of a Bloch point.

Last, as the typical BP radius is 10 nm, it is much larger than

the lattice constant so that the core energy corrections are

anticipated to play a minor role.

Figure 3 compares the structures of a vortex without and

with a BP, in the form of a series of slices across the sample

thickness. The vortex core radius varies across the thickness

according to the so-called barrel shape already found by ap-

proximate Ritz calculations.20 Moreover, close to the sur-

faces the in-plane magnetization flow adopts the form of spi-

rals so as to screen the magnetic surface charges associated

with the core magnetization !see also Fig. 4". The spiraling is
markedly reduced for a structure with a BP, because the BP

itself compensates the surface charges !Fig. 4". This is re-

FIG. 2. Local exchange energy of a Bloch point. The exchange

energy distribution is evaluated within spheres of increasing radius

R, located at the film center !where the BP is". BP exchange energy
is evaluated as the energy difference between a vortex having a BP

and one without it, for a series of mesh sizes d. The profiles are

compared to the analytical relation !2", and a linear extrapolation to
zero mesh size of these profiles is shown !see formula in the text;
the symbol was put on the extrapolation from the coarsest mesh".
The profile for the vortex without BP is also shown !at d

#2.5 nm). The sample is a 200-nm-diameter disk, 50 nm thick.

The vertical axis shows the half-energy for later comparison with

the corresponding profiles at a surface of a disk containing a com-

pressed vortex.

FIG. 3. Views of the central part !50 nm squares" of the structure of a normal vortex !top series" and of a vortex with a Bloch point
!bottom series", in the form of a series of slices at different depths. The sample is 200 nm in diameter, 50 nm thick, and with a 2.5-nm mesh.
Slices pertain, from left to right, to the cell planes number 1 !bottom", 5, 10, 11, 15, and 20 !top". Pixels are colored according to the
perpendicular magnetization component !the pure vortex core is upwards magnetized", while the in-plane magnetization orientation is given
by the arrows. The BP structure is of type !c" shown in Fig. 1.
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094410-4

depth

Mediated by a monopole (hedgehog).  A. Thiaville et al., PRB (2003).
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Two-stage core flipping

• Vortex-antivortex pair is created (∆q = 0).

• requires a modest field.

• Antivortex + old vertex annihilate (∆q = 1);

• spin-wave explosion is the death of a skyrmion.

Mz > 0
Mz < 0



Two-stage core flipping

B. Van Waeyenberge et al., Nature (2006).



Two-stage core flipping

B. Van Waeyenberge et al., Nature (2006).

q = −1/2−1/2 = −1



Vortex-antivortex annihilation

K. S. Lee et al., APL (2005); R. Hertel and C. M. Schneider, PRL (2006).

Vortex + antivortex → skyrmion → spin waves

O. Tretiakov and O. T., PRB (2007).

Energy of spin waves = 8πA (skyrmion energy).



Summary
• Submicron magnets have just the right scale:

• dipolar and exchange energies are comparable.

• Thin films with isotropic exchange have

• bulk vortices with skyrmion charge ±1/2,

• edge defects with fractional vorticity ±1/2.

• Domain walls in nanostrips and nanorings are 
made from integer and fractional vortices.

• Dynamics of DWs reduces to the creation, 
propagation, and annihilation of these defects.

• Skyrmion charge of vortices affects dynamics.

• Skyrmion number violation directly observed.


