Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

Pentaquarks: Much Ado About Nothing?

Wouter Deconinck

Nuclear Physics Seminar University of Virginia October 30, 2007

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

Outline

Introduction QCD in a Nutshell Exotic Baryons in QCD Status of the Exotic Baryon $\Theta(1540)$ Photoproduction Experiments NK Scattering Experiments High-Energy $\Theta(1540)$ Production Exotic Baryons at the HERMES Experiment The HERMES Experiment $\Theta^+(1540)$ at HERMES Additional Θ^+ Studies Work in Progress Conclusions

Exotic Baryons at the HERMES Experiment

Conclusions

QCD in a Nutshell

QCD describes interactions of quarks and gluons

- Quarks q carry color charge (r, g, b)Anti-quarks \overline{q} carry anticolor charge $(\overline{r}, \overline{g}, \overline{b})$
- Gluons g carry combined color charge, *i.e.* rb
- Only colorless objects, *i.e.* $q\overline{q}$, $qqq \rightarrow$ color confinement

Multiquark states: hadrons

- $q\overline{q} \rightarrow$ mesons (integer spin)
- qqq → baryons (half-integer spin)

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

QCD in a Nutshell

Multiplets of states with only *u*, *d*, *s* quarks

Light mesons (qq)
 3_f × 3_f = 1 + 8

Q = -1

Q = 0

Q = -1 Q = 0

QCD in a Nutshell

Multiplets of states with only *u*, *d*, *s* quarks

Q = 0

• Light mesons $(q\overline{q})$ $3_f \times \overline{3}_f = 1 + 8$

Q = -1

• Light baryons (qqq)

Q = -1

Exotic Hadrons

More than 3 quarks:

- Exotic mesons ($qq\overline{qq}$) have \geq 4 quarks, integer spin
- Exotic baryons (qqqqqq) have ≥ 5 quarks, half-integer spin

Surprised? Look at the quark sea!

A proton can also be $uud + s\overline{s}$ (*crypto-exotic*), but mixes with the normal *uud* state.

Manifestly exotic "pentaquarks" (Z^* , Θ^+ , Ξ^{--} , Θ_c)

- Minimum quark content: 4 q and 1 \overline{q}
- q
 has a different flavor!
- Quantum numbers can only be obtained with five or more quarks, *e.g.* $\Theta^+(uudd\overline{s})$ has strangeness S = +1

Exotic Baryons at the HERMES Experiment

Conclusions

Exotic Hadrons

Expected characteristics of pentaquarks

- Quick fall-apart (short life-time) \rightarrow large resonance width
- Difficult to observe in invariant mass spectra

Early Z^* sightings (late 60s, 70s)

- Scattering of kaon beams on protons or deuterons
- Several Z^* resonances (S = +1, isoscalar and isovector)
- Widths of 100 MeV at masses of 1800–1900 MeV
- Various contradictory and unconfirmed results

Issue of Z^* never unambiguously resolved, abandoned in 80s.

Exotic Hadrons: Chiral Quark Soliton Model

Diakonov, Petrov, Polyakov (1997)

- Extension of Skyrme model
- Treat rotations in flavor space as equivalent to real space, mass states are rotational excitations with *E* ~ *J*(*J* + 1)
- Successful in various aspects of QCD
- Applicability to exotic spectroscopy debated

For light quarks *u*, *d*, *s*:

Baryons reproduced in multiplets $8 + 10 + \overline{10} + 27 + \cdots$

- 8 (octet): non-exotic spin $\frac{1}{2}$ baryons
- 10 (decuplet): non-exotic spin $\frac{3}{2}$ baryons

10 (anti-decuplet): exotic spin ¹/₂ baryons
 Mass splittings for 8 and 10 are correctly reproduced

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

Exotic Hadrons: Chiral Quark Soliton Model

Anti-decuplet $\overline{10}$ with masses predicted by QSM

•
$$\Theta^+ \to pK^0 \text{ or } nK^+$$
 • $\Xi^{--} \to \pi^- \Xi^- \text{ or } K^0$

Quark content uudds

• $\equiv^{--} \rightarrow \pi^{-} \equiv^{-}$ or $K^{-} \Sigma^{-}$ • $\equiv^{+} \rightarrow \pi^{+} \equiv^{0}$ or $\overline{K}^{0} \Sigma^{+}$

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

Experimental Status: Since 2003...

Experimental Status

Reaction mechanisms for $\Theta(1540)$ production

- Photoproduction with E_{γ} few GeV on fixed targets
 - Exclusive reactions on *p* (or *n* from missing mass) (SAPHIR, CLAS-p, CLAS-g11)
 - Inclusive reactions on A (d, C, Si): Fermi-motion correction (LEPS, CLAS-g10)
- Θ formation by *K* on *n* (DIANA, old data, Belle)
- High energy *e* on *p*, *A* (ZEUS, HERMES, BaBar, Belle)
- High energy *p* on *p*, *A* (SVD-2, HyperCP, HERA-B)

Status of the Exotic Baryon ⊖(1540) ●○○○○○○○○○ Exotic Baryons at the HERMES Experiment

Conclusions

Photoproduction on A

LEPS

Original experiment on C

- First report of Θ⁺
- Reaction $\gamma C \rightarrow K^+ K^- X$
- Fermi-motion correction
- Background poorly understood

Experiment repeated on d

- No Fermi-motion
- Background seems understood (from *p* target)
- Second bump at higher M
- Still no publication...

Status of the Exotic Baryon ⊖(1540) ●00000000000 Exotic Baryons at the HERMES Experiment

Conclusions

Photoproduction on A

LEPS

Original experiment on C

- First report of Θ⁺
- Reaction $\gamma C \rightarrow K^+ K^- X$
- Fermi-motion correction
- Background poorly understood

Experiment repeated on d

- No Fermi-motion
- Background seems understood (from *p* target)
- Second bump at higher M
- Still no publication...

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

Photoproduction on A

CLAS-d

$\gamma d \rightarrow p K^+ K^-(n)$

- Significance $\frac{S}{\sqrt{B}}$ around 5σ
- Final state interactions
- Background difficult to estimate

Experiment repeated

- Repeated with CLAS-g10
- Better background estimation
- Significance now only 3σ ...

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

Photoproduction on A

CLAS-d

$\gamma d \rightarrow p K^+ K^-(n)$

- Significance $\frac{S}{\sqrt{B}}$ around 5σ
- Final state interactions
- Background difficult to estimate

Experiment repeated

- Repeated with CLAS-g10
- Better background estimation
- Significance now only 3σ ...

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

Photoproduction on A: CLAS versus LEPS

Differences in acceptance (Titov, nucl-th/0607054)

Interference with other processes (Guzey, hep-ph/0608129)

- Identical final states interfere in total cross section
- · Selection criteria, experimental conditions important
- More details in talk Moskov Amarian (November 27)

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

Photoproduction on p

SAPHIR

Exclusive Θ^+ production

- $\gamma p \rightarrow K^0 \Theta^+ \rightarrow \pi^+ \pi^- K^+ n$
- Cross section for Θ⁺ estimated as 300 nb

Experiment repeated

- Cross section upper limit determined as 0.8 nb
- This is in disagreement with SAPHIR

CLAS-g11

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

Photoproduction on p

SAPHIR

Exclusive Θ^+ production

- $\gamma p \rightarrow K^0 \Theta^+ \rightarrow \pi^+ \pi^- K^+ n$
- Cross section for Θ⁺ estimated as 300 nb

CLAS-g11

Experiment repeated

- Cross section upper limit determined as 0.8 nb
- This is in disagreement with SAPHIR

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

Photoproduction on *p*: $nK^+K^-\pi^+$

CLAS-p

- $\gamma p \rightarrow \Theta^+ K^- \pi^+ \rightarrow n K^+ K^- \pi^+$
- *n* reconstructed by missing mass
- π^+ forward, K^- backward (CMS)
- Peak in $M(nK^+)$ with $\frac{S}{\sqrt{B}} \approx 7 \sigma$
- Will be tested in CLAS-g12 experiment (April 2008)

Exotic Baryons at the HERMES Experiment

Conclusions

NK scattering: Formation of Θ

Ideal way to study Θ resonance

- *NK* scattering: *nK*⁺ or *pK*⁰
- Take K of appropriate energy on fixed target N
- $E_K \approx 430 \text{ MeV}$ for Θ formation

Unfortunately, no low energy K beam facilities anymore:

- Re-analysis of partial wave analysis results
- Direct formation with slowed down beam of higher energy
- Secondary K⁺ produced in e⁺e⁻ collisions
- Quasi-formation: quasi-free K⁺ on quasi-free n (see photoproduction reactions at LEPS)

Exotic Baryons at the HERMES Experiment

Conclusions

NK scattering: Re-analysis Partial Wave Data

Look at the change in χ^2 by inclusion of Θ as S_{01} or P_{03}

• Possible Θ^+ must have $\Gamma < 1 \text{ MeV}$

• Decrease in χ^2 mostly due to limited data in PWA

Figure: Arndt, nucl-th/0308012

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

NK scattering: Direct formation with slow K^+ beam

DIANA experiment

Figure: Barmin, hep-ex/0304040 K^+ n(Xe) $ightarrow \Theta^+
ightarrow pK^0_S$

- Energy E_{K^+} around 500 MeV
- Definite S = 1 (initial state)
- Rescattering of *p* or K⁰_S in Xe nucleus
- Only direct formation
 experiment

Experiment repeated

- Rescattering suppression studied with MC
- No peak at higher/lower E_{K^+}
- $\Gamma=0.36\pm0.11\,MeV$

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

NK scattering: Direct formation with slow K^+ beam

DIANA experiment

Figure: Barmin, hep-ex/0603017 $\textit{K}^{+}\textit{n}(\textit{Xe})
ightarrow \Theta^{+}
ightarrow \textit{pK}_{S}^{0}$

- Energy E_{K^+} around 500 MeV
- Definite S = 1 (initial state)
- Rescattering of *p* or K⁰_S in Xe nucleus
- Only direct formation
 experiment

Experiment repeated

- Rescattering suppression studied with MC
- No peak at higher/lower E_{K+}
- $\Gamma=0.36\pm0.11\,MeV$

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

NK scattering: Secondary K^+ beams

BELLE

Figure: Abe, hep-ex/0507014

 $K^+ n(Si) \rightarrow \Theta^+ \rightarrow pK^0_S$

- K^+ from the reaction $D^{*-} \rightarrow \overline{D}^0 \pi^- \rightarrow K^+ \pi^- \pi^-$
- Most probable $E_{K^+} = 600 \, {
 m MeV}$
- n(Si) from vertex detector
- Other reactions contribute → selection criteria

Upper limits

- Yield DIANA: solid line
- $\Gamma < 0.9 \pm 0.3\,\text{MeV}$
- Does not support DIANA

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

NK scattering: Secondary K^+ beams

BELLE

Figure: Abe, hep-ex/0507014

$K^+n(Si) ightarrow \Theta^+ ightarrow pK^0_S$

- K^+ from the reaction $D^{*-} \rightarrow \overline{D}^0 \pi^- \rightarrow K^+ \pi^- \pi^-$
- Most probable $E_{K^+} = 600 \, \text{MeV}$
- n(Si) from vertex detector
- Other reactions contribute \rightarrow selection criteria

Upper limits

- Yield DIANA: solid line
- $\Gamma < 0.9 \pm 0.3 \, \text{MeV}$
- Does not support DIANA

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

High energy Θ^+ production: *ep* at HERA

HERMES

- For $Q^2 \approx 0 \, {
 m GeV}$
- More about this later!

ZEUS

- Only for $Q^2 > 20 \,\mathrm{GeV}$
- Not seen at H1...

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

High energy Θ^+ production: e^+e^- at BaBar

- Θ yield order or magnitude below ordinary hadrons
- But do we really expect a 5-q state to behave similar?

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

High energy Θ^+ production: *pp*

SVD-2

Original result

- 70 GeV $pA \rightarrow pK_S^0$
- Background unknown

Experiment repeated

- Statistics increased
- Mixed event background

But

 No confirmation from SPHINX

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

High energy Θ^+ production: *pp*

SVD-2

Original result

- 70 GeV $pA \rightarrow pK_S^0$
- Background unknown

Experiment repeated

- Statistics increased
- Mixed event background

But

 No confirmation from SPHINX

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

Experimental Status: Overview

Figure: Schumacher, nucl-ex/0512042

Exotic Baryons at the HERMES Experiment

Conclusions

The HERMES Experiment

High-energy electrons on fixed target

- Polarized electron beam, polarized gas target
- Main goal: spin structure of the nucleon (spin puzzle)
- But many more interesting analyses: DVCS, transversity, nuclear effects...

Quasi-real photoproduction

- Electron emits photon with $Q^2 \approx 0$
- Photon interacts with nucleon
- Produced hadrons detected in forward spectrometer
- Electron not detected, bending angle too small

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

The HERA Storage Ring

DESY physics institute in Hamburg, Germany with the HERA and PETRA storage rings

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

The HERA Storage Ring

Overview of DESY

HERA: particle physics

- Collider for H1, ZEUS: 27.5 GeV *e* on 920 GeV *p*
- HERMES: 27.5 GeV e on A
- HERA-B: 920 GeV p on A
- Last beam in June 2007
- Analysis of data continues

Also synchrotron radiation

- HASYLAB
- VUV-FEL/FLASH
- PETRA III
- XFEL (ready: 2013)

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

The HERMES Spectrometer

- 27.6 GeV e^{\pm} HERA beam on \overrightarrow{H} , \overrightarrow{He} , \overrightarrow{D} or H₂, D₂, He,...
- Resolution: $\frac{\Delta \rho}{\rho} = 1.4 2.5\%$, $\Delta \vartheta \lesssim 0.6$ mrad
- TRD, Preshower, Calorimeter: hadron/lepton separation
- RICH: hadron identification (π , K, p)

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

The HERMES Spectrometer

Hadron/lepton separation: with combination of

- TRD
- Calorimeter
- Preshower
- RICH

Hadron identification: Ring-Imaging Čerenkov detector (RICH)

> Two radiators for larger kinematic coverage

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

The HERMES Spectrometer: RICH Detector

Dual radiator:

- Aerogel: *n* = 1.03
- C₄F₁₀ gas: n = 1.0014

Identification efficiency

- Momentum dependence
- Range 4–9 GeV for protons

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

$\Theta^+(1540)$ at HERMES

- Reaction: $\Theta^+ \rightarrow p K^0_S \rightarrow p \pi^+ \pi^-$
- Topology:

- Select K⁰_S events
- Remove A events

• $M(\pi^+\pi^-)$ mass spectrum $K_{\rm S}^0$ peak at 496.8 MeV

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

Θ^+ (1540) at HERMES

• Spectrum with polynomial fit

- Unbinned fit with 3rd order polynomial and Gaussian
- Θ^+ peak:
 - $M = 1528 \pm 2.6 \, \text{MeV}$
 - $\sigma = 8 \pm 2 \,\mathrm{MeV}$

• Significance
$$\frac{S}{\delta S} \approx 3.7 \sigma$$

Status of the Exotic Baryon $\Theta(1540)$

 $\Theta^+(1540)$ at HERMES: Understanding the Background

Spectrum with MC background

- Mixed-event background
 - *p* from one event
 - K_S^0 from other event
- PYTHIA6 Monte Carlo
 - No Σ^{*+} resonances
 - Added by hand
- Θ^+ peak:
 - $M = 1527 \pm 2.3 \, \text{MeV}$
 - $\sigma = 9.2 \pm 2 \,\mathrm{MeV}$
- Significance $\frac{S}{\delta S} \approx 4.3 \sigma$

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

Additional Θ^+ studies: Tracking or PID problems

• Correlation $M_{\pi\pi}$ vs. $M_{\rho\pi}$

- Ghost tracks
 - No correlations
 - Examined data files
 - No ghost tracks!
- PID leaks
 - π^+ is actually *p* (mis-ID)
 - K_S combination is a Λ
 - A peak at

 $M_{\Lambda} = 1116 \, \text{MeV}$ not seen

 No significant mis-ID of *p* tracks as π⁺!

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

Additional Θ^+ Studies: Tracking or PID Problems

Λ(1116) contribution

- Ghost tracks
 - No correlations
 - Examined data files
 - No ghost tracks!
- PID leaks
 - π^+ is actually p (mis-ID)
 - K_S combination is a Λ
 - A events are cut out from spectrum
 - Inefficient A cut not reason for peak!

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

Anti-Particle $\overline{\Theta}(1540)$

- No $\bar{\Theta}(1540)$ peak visible, ratio $\bar{\Theta}/\Theta = (3\pm 6)/(59\pm 16)$
- Do we expect to see many Θ
 (1540)? Our target favors particles!

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

 $\bar{\Lambda}(1520) \rightarrow \bar{p}K^+$

Conclusions

Anti-Particle $\overline{\Theta}(1540)$: Comparison with $\Lambda(1520)$

 $\Lambda(1520) \rightarrow pK^{-}$

- $M = 1521.3 \pm 0.8$ (stat) ± 0.5 (syst) MeV (acceptance effect)
- In HERMES acceptance for $\Lambda(1520)$ ($P_z > 6 \text{ GeV}$): $R_{\overline{\Lambda}/\Lambda} = 0.15 \pm 0.05(\text{stat}) \pm 0.02(\text{syst})$

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

Anti-Particle $\overline{\Theta}(1540)$: Comparison with $\Lambda(1520)$

Expected number of $\overline{\Theta}(1540)$

- 59 \pm 16 $\Theta(1540)$ observed
- 10 ± 4 $\overline{\Theta}$ (1540) are expected when $R_{\overline{\Theta}/\Theta} = R_{\overline{\Lambda}/\Lambda}$
- $3 \pm 6 \ \bar{\Theta}(1540)$ were observed
- Both numbers are consistent with each other

Exotic Baryons at the HERMES Experiment

Conclusions

Work in Progress at HERMES

Transversely polarized hydrogen data

- Large amount of data, taken in 2002–2005
- Transverse magnetic field around polarized target
- Correction method for DIS electron from target available
- For displaced K⁰_S vertices: development of different code

Data taken in 2006–2007

- Higher target densities (unpolarized)
- Solenoidal field does not affect forward tracks
- Approximately doubled statistics on D, five times on H
- Data still being calibrated (run ended June 2007)

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

Conclusions

Improvements in Particle Identification

RICH hit pattern

- · Low intensity of Čerenkov light: few PMT hits
- Ambiguities exist when multiple tracks in one half
- Algorithm for event-level PID developed (by UIUC), previously only track-level existed
- Effects in certain momentum ranges seem substantial

Conclusions

Event Mixing as Background Estimator Method

- Combine one daughter from one event with the other daughter from another event
- No resonances will appear (in theory...)

- equal multiplicity
- same region of detector
- ...
- Demonstrated on ${\cal K}^0_S
 ightarrow$
 - changing buffer size

Conclusions

Event Mixing as Background Estimator Method

- Combine one daughter from one event with the other daughter from another event
- No resonances will appear (in theory...)

- equal multiplicity
- same region of detector
- ...
- Demonstrated on ${\cal K}^0_S
 ightarrow$
 - changing buffer size

Conclusions

Event Mixing as Background Estimator Method

- Combine one daughter from one event with the other daughter from another event
- No resonances will appear (in theory...)

- equal multiplicity
- same region of detector
- ...
- Demonstrated on $K_S^0 \rightarrow$
 - changing buffer size

Conclusions

Event Mixing as Background Estimator Method

- Combine one daughter from one event with the other daughter from another event
- No resonances will appear (in theory...)

- equal multiplicity
- same region of detector
- ...
- Demonstrated on ${\cal K}^0_S
 ightarrow$
 - changing buffer size

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

 $M(p\pi^+\pi^-)$ spectrum

Conclusions

Full Data Set 2002–2007

$M(\pi^+\pi^-)$ spectrum

- Published data set: approximately 1000 events
- 2006–2007, deuterium target: two times more events
- 2006–2007, hydrogen target: five times more events

Resolution will improve with fully calibrated data!

Status of the Exotic Baryon $\Theta(1540)$

Exotic Baryons at the HERMES Experiment

 $M(p\pi^+\pi^-)$ spectrum

Conclusions

Full Data Set 2002–2007

$M(\pi^+\pi^-)$ spectrum

- Published data set: approximately 1000 events
- 2006–2007, deuterium target: two times more events
- 2006–2007, hydrogen target: five times more events

Resolution will improve with fully calibrated data!

Exotic Baryons at the HERMES Experiment

Conclusions

Summary

Overview of HERMES contributions

- Θ^+ observed at 1528 MeV, with low statistics
- · Lots of systematic studies on result: peak is robust
- No Θ^{++} observed \rightarrow isosinglet
- No Ξ^{--} observed (other pentaquark, not shown here)
- No $\overline{\Theta}$ observed, but from the $\Lambda(1520)$ we expect this

Plans at HERMES

- All data taking completed, five-fold increased number of events
- Analysis continuing and heading towards publication

Summary

Experimental status: status

- Few results stand unchallenged in their reaction channels (CLAS-*p*)
- CLAS and COSY could not confirm their earlier positive sightings
- Other repeat experiments suffer from the same low statistics, and low significance

Theoretical status

- Acceptance difference between experiments large enough (Titov)
- Interference between ⊖ and other processes (Guzey, Amarian)