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1: How the Photon is usually taught

2: Elementary Theory of the Wave Function of a Photon

3: “Advanced” Theory of the Wave Function of a Photon

OUTLINE

4: Spin-Orbit Interaction in a Single Photon



Maxwell-Boltzmann    vs.    Bose-Einstein
 

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

How the photon is usually taught:

Light is made of EM waves. Light is made of corpuscles.



Maxwell-Boltzmann                    Bose-Einstein

Light is made of EM waves.
Modes are distinguishable.
M-B counting statistics applies. 

Light is made of corpuscles.
They are indistinguishable.
B-E counting statistics applies. 

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Planck spectrum
prediction

EM fields as entities.
Photons as state 
description.(Dirac)

inference

prediction

Photons as entities.
Quantum field as 
“emergent.”

inference

Not a change of 
basis. A change 
of viewpoint



1. Photons are Bose particles with

2. Light is made of photons, but it also has wave properties, which are 
important when photons are flying through space, but not when they 
are detected. 

Question:Must a photon be monochromatic? 

E = hν

An atom initially 
in an excited 

Question:If a photon can be in a fairly localized wave packet, what 
wave equation does this obey? 

QuickTime™ and a
Animation decompressor

are needed to see this picture.

in an excited 
state decays 
spontaneously.



begin with Einstein’s kinematic equation:

E = (m c2)2 + (c p)2

m=mass, p=momentum

PaulAl

electron: m>0, v<<c

Teaching Wave Mechanics for Particles - 1

(de Broglie) 
p = hk (Planck) E = hω
(ignore polarization, spin, interactions)

p2
photon: m=0, v=c

Dispersion relations --> Wave Equations in 1D

Electron Wave 
EquationQuickTime™ and a

TIFF (Uncompressed) decompressor
are needed to see this picture.

Erwin
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(h cancels out)



Teaching Wave Mechanics for Particles - 2

 
p = hk  E = hω

ψ n (x,t) =
2

b
sin(knx)exp(−iω nt) kn = nπ / b, n = 1,2,3...

Photon E = cp
∂2

∂t 2 Ψ(x,t) = c2 ∂2

∂x2 Ψ(x,t)

Electron
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E = p2 / 2m

Particle in a Box

x = 0 b
n = 1
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h
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h
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n = 2

n = 3

(like a laser resonator)
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2mh

x = 0 b
n = 1

n = 2

n = 3

(an electron “resonator”)



Probability: Born Interpretation

PhotonElectron

the probability density for finding the particle at 
position  x at time  t .
Ψ(x,t)

2 =

Teaching Wave Mechanics for Particles - 3

Photon

Always relativistic: 
Problematic, but OK 
for eigenstates of 
energy (or states with 
small spread in 
energy)

Electron

• Nonrelativistic: OK

• Relativistic:
Problematic -
charge density not ≠
mass density



Spin: Just tack it on

Electron (s = 1/2)

Spin is described by two new 
quantum numbers, s and m

 
S
r

= h s(s + 1)  
S

u$
= hm

 u$

Photon (s = 1)

Teaching Wave Mechanics for Particles - 4

Electron (s = 1/2)

Ψel = ψ
+

1

2

(x,t)χ
+

1

2

+ ψ
−

1

2

(x,t)χ
−

1

2

 
S
r

= h (1 / 2)(1 / 2+ 1)

 
S

u$
= hm (any axis)

m = 1/2, -1/2  “spin projection”

Photon (s = 1)

Ψ ph = ψ +1(x,t)χ+1 + ψ −1(x,t)χ−1

 
S
r

= h (1)(1+ 1)

 
S

k$
= hσ (propagation axis)

(no worse than what we do to an electron)

= 1, -1 (not 0) “helicity”σ



So, What is a Photon?

1. The name given to the n=1 states of the 
electromagnetic quantum field.

---- or ----
2.  A fundamental quantum particle, through which 

the EM field emerges when many photons are the EM field emerges when many photons are 
present. (Like a nation emerging from an 
aggregate of many people.)

Analogous statements hold for electrons.

Many details have been swept under the rug…
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Derivation of 
Quantum Wave 
Equations

v~c
Dirac Equation
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Derivation of 
Quantum Wave 
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E = (m c2)2 + (c p)2
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Parallel 
treatment 
for photon:

m≠O
s=1/2
v~c

electron

Derivation of 
Quantum Wave 
Equations

(Einstein)

Dirac Equation
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∇ ⋅ Ψ = 0

3 components for each helicity

Require                    
local energy density
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Derivation of Photon Wave Equation
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⋅ p
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momentum wave fn
photon, m=0, s=1, 
3 components
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Photon Wave Equation
f (E) = E

Require                     
local energy density. -->
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Arbitrary weight fn.
f (E)



E = (m c2)2 + (c p)2

Photon Wv. Equation
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Compare to 
Maxwell’s Equations in Free 
Space:
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For a single-photon field, the quantum wave function of 
the photon obeys the same wave equation as the 
complex electromagnetic field 

σ = ±1

E + σiB

i
∂

Ψ
uru

= σc ∇
uru

×Ψ
uru

helicity (spin, polarization):

Maxwell, in 1862, discovered a fully relativistic, 
quantum mechanical theory of a single photon.
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MODES STATES

We can elevate the photon wave function to a quantum field, then the usual 
quantum field theory reappears. See the review:
“Photon wave functions, wave-packet quantization of light, and coherence 
theory,” 

Brian J. Smith and M. R., New J. Phys. 9, 414 (2007)

There are subtleties:
•                      energy density, not particle number density.       
• Cannot localize a photon wave function to a point. 
• The scalar (inner) product has an unusual form.
• There is NOT a Fourier-transform relation between momentum and position wave 
functions.      
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T
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States (Modes) of Single Photons

Polarization Transverse Beam Shape

x

y

z

A photon has four degrees of freedom: momentum in x, y, and z; and spin (polarization). 

HG10

HG01

LG01 HG’10

HG’01

LG10V

H

D

A

LC

RC

Laguerre-Gauss and Hermite-Gauss 
Spatial Modes



1. Spin Hall Effect for Electrons: opposite spin accumulation on opposing latteral 
surfaces of a current-carrying sample. Its origin is spin-orbit interaction.

Dyakonov and Perel (1971) Sov. Phys. JETP Lett. 13, 467 

Hirsch (1999) PRL 83, 1834

2. Spin Hall Effect for Light: spin-dependent displacement perpendicular to the 
refractive index gradient for photons passing through an air-glass interface.

M. Onoda, S. Murakami, N. Nagaosa, PRL 93, 083901 (2004)

Observed: Hosten, Kwiat Science 319 (2008)

To what extent is there a photon-electron analogy?

Observed: Hosten, Kwiat Science 319 (2008)

Inhomogeneity in refractive index causes 
SOI.



Spin-Orbit Interaction (SOI) in Spherical Potentials 

• ELECTRONIN AN INHOMOGENOUS  SPHERICAL ELECTRIC POTENTIAL (ATOM) 

 

H ' = −
e2

2m2c2

1

r3 SgL

 
r
r

× p
ur

= L = O AM

(atomic fine structure)

S = SAM

Coulomb 
potential 

• PHOTONIN A DIELECTRIC SPHERE 

(atomic fine structure)

Polarization-dependent 
mode-frequency shifts?



Spin-Orbit Interaction (SOI) in CylindricalPotentials

• ELECTRONIN AN CYLINDRCIAL WAVEGUIDE 

Solve Dirac Equation for 
the traveling-wave states.

• PHOTONIN A CYLINDRICAL OPTICAL FIBER

Solve Maxwell’s Equations 
for the modes and send a 
single photon through.



Dirac Equation --> Schrodinger Equation with SOI 
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ELECTRON in a CYLINDER STEP POTENTIAL

(C Leary, D Reeb, M Raymer, to appear NJP)
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ELECTRON in a CYLINDER STEP POTENTIAL
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ELECTRON in a CYLINDER STEP POTENTIAL
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• For a given energy, a parallel-AM electron state has a smaller z-propagation constant than that 
of an anti-parallel state. 
• For a given z-propagation constant, a parallel-AM electron state has a larger energy than that 
of an anti-parallel state. 
• Non-perturbative solution of Dirac equation gives same result.
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ELECTRON STATE ROTATION in a CYLINDER WAVEGUIDE

Superposition of degenerate positive-helicity states with opposite OAM:

   ml = ± 2

+ =
   σ ⋅ ml = −2

   σ ⋅ ml = +2

+ =
   σ ⋅ ml = −2

   σ ⋅ ml = +2

 σ = −1

 σ = +1

z

z



Superposition of two degenerate positive-helicity states 
with opposite OAM:

   ml
= +2,−2

ELECTRON STATE ROTATION in a CYLINDER WAVEGUIDE

 σ = +1 σ = −1



• Kapany and Burke first predicted polarization-dependent spatial mode rotation 
of optical modes in fiber. (1972)

• Did not explain in terms of SOI. 

z

SPATIAL MODES ROTATION FOR LIGHT?

coren

claddingn

z



• Zel’dovich, Liberman (1990; PRA 46, 5199, 1992) first predicted optical SOI:
– Treated a many-mode fiber with a parabolic index profile.
– Predicted spatial mode rotation, due to SOI. 
– Observed rotation of speckle pattern, but not of single modes.

step-index 200 um

Dooghin et al PRA 1992

• Complementary to Rytov-Berry rotation of polarization by topological phase.
• See also works by A.V. Volyar.



Maxwell’s Equations in an Inhomogeneous Medium, 
interpreted as the Quantum Wave Equation for a single 
photon 

D = εE, H = B / µ, ∇ ⋅ D = 0, ∇ ⋅ B = 0
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--> Photon Wave Equation:

I. Bialynicki-Birula (Prog.Opt.1996)

(6 components)



• Maxwell Wave Equation:

Perturbation Theory for Optical SOI in Step-Index Fiber
(C Leary)
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•  Unperturbed eigenmodeshave well 
defined components of spin      and 
orbital angular momentum        along z 
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Perturbed Modes in Circular-Pol Basis States:

Perturbation Theory for Optical SOI in Step-Index Fiber
(C Leary)
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Nonperturbative Solutions for Optical SOI in Step-Index Fiber

propagation constant      is 
different when SAM and 
OAM are parallel or 
antiparallel (for fixed    )

β

ω β
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anti-parω

z

  

σ = +1

RCP

z

   ml = +2   ml = +2

  

σ = −1

LCP
parallel anti-parallel

  e
+ i2φe

i βz −ω t( )



Photon spin angular momentum (SAM) and orbital 
angular momentum (OAM) can carry quantum 

information.

If photon SAM and OAM interact, then quantum gate 
interactions can perhaps be based on such interactions.



Single-Photon Spin-Controlled Hadamard Gate
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Flipping the photon spin (circular polarization) flips the direction 
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SAM-OAM Entangling by Hadamard gate

+
 σ = −1  σ = +1

   
ml = 2
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0
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Summary: Spin-Orbit Interaction in Cylindrical Waveguides

• Phase-velocity splitting proportional to        .               
• Parallelor anti-parallelSAM and OAM give rise to 
differentpropagation constants, for fixed frequency.
• Depends on total AM,                     .
• SOI-split states (modes) have a longitudinally varying 
relative phase difference, which creates rotation of 

  σ ml

j lm m σ= +

relative phase difference, which creates rotation of 
superposition states (modes).
• Can be used to implement a single-photon spin-controlled 
spatial rotation, for entangling spin and spatial modes.
• Electron-photon analogy strengthens the photon-as-
particle viewpoint. 



Poincare Sphere for Polarization

H

RC

H V

+i =
RC

H V

-i =
LC

H

V

D A

LC

H V

+ =

H V

- =

D

A

Rotation=Hadamard



Poincare Sphere for L=1 Modes

HG10

LG01

HG01

HG’10 HG’01

LG10

+ =
HG10 HG01 HG’10

- =
HG10 HG01 HG’01

Rotation=Hadamard

Van Enk;  Galvez..



What are the proper Scalar Product and 
Normalization?      Bialynicki-Birula (1996)+refs.

• should be bilinear   • should be Lorentz invariant
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The mean Energy of the photon is:
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Quantum Field Theory: Dirac used Monochromatic Modes
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Bosonic 
operators:

Quantum Field Theory using Temporal-Spatial (Wave-Packet) Modes
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U. M. Titulaer and R. J. Glauber, Phys. Rev. 145, 1041 (1966)

Quantum Field Theory using Temporal-Spatial (Wave-Packet) Modes



The T-G wave-packet modes are orthogonal under the same 
scalar product as are the photon wave functions
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If we quantize the one-photon wave function, we obtain standard 
Dirac Quantum Field Theory

Bosonic 
operators

energy e-states:
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Dirac form


