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RydbergRydberg Atom Pair InteractionsAtom Pair Interactions
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• Interesting for a 
variety of reasons
– Resonant energy 

transfer
– Dipole Blockade
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– Dipole Blockade
– Exotic states of matter

•• MacrodimersMacrodimers

• Requires detailed 
knowledge of Pair 
interaction potentials



Calculations by Matrix Calculations by Matrix 
DiagonalizationDiagonalization
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• Includes dipole and quadrupole contributions
• Diagonalized in the Stark shifted basis with  E || R

– Thanks Arne!

where the multipole operator is

and
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EE--Fields and Avoided CrossingsFields and Avoided Crossings
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• Electric fields have a
strong influence on 
avoided crossings
– Existenceof wells 
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– Existenceof wells 
depends on E

– Pairs may be bound 
or dissociative

•• PhotoinitiatedPhotoinitiated (PI) (PI) 
CollisionsCollisions

•• MacrodimersMacrodimers



Experimental SetupExperimental Setup
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• Time-of-Flight spectrometer
• Centered on Cs MOT
• UHV system (~10-10 Torr)
• Z-Stack microchannel plate 

detector
– res. x-y:20µm, z:500ps
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Signals and TimingSignals and Timing
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TimeTime--ofof--Flight DistributionsFlight Distributions

• Expansion of TOF 
distribution depends 
on:
– ThermalThermal velocity
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simulated

– ThermalThermal velocity

– Recoil velocity 
determined by 
collisioncollision exit channel

– Coulomb repulsionCoulomb repulsion
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experimental



Temperature MeasurementTemperature Measurement
• Resolution of spectrometer 

calibrated using thermal 
expansion
– Gaussian distribution
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– Velocity resolution of         
2.5 cm/s2.5 cm/s

– Light shift parameter            
Λ = Ω2/|δ|Γ
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PI Collisions vs. MacrodimersPI Collisions vs. Macrodimers

•• PI collision PI collision can occur from 
excitation at a stationary point
– Collision products gain velocity 

vcoll determined by the energy of 
the exit channel

OU-AMO
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•• MacrodimerMacrodimercan be excited in a well
– Excitation with narrow band cw laser 

light causes R to have fixed distribution
– Vibrational period (~2 µs) < excitation 

time (~5 µs)



Delay Dependence of TOF Delay Dependence of TOF 
DistributionsDistributions

• Coulomb repulsion 
in TOF identifies 
pair interaction
– Expansion at short 
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– Expansion at short 
delay can identify R
as constant

– Expansion at long 
delay is a direct 
measure of vcoll.
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PI Collision MeasurementPI Collision Measurement

• Pair resonance 
observed near 
89D+89D
– No prominent well
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– No prominent well
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Pair IdentificationPair Identification
(a) 2-photon for 6P→89D
(b) 2-atom from charge 

pulse height distribution
(c) 2-photon 6S→6P
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Exit Velocity MeasurementsExit Velocity Measurements

• Expansion the result of 
thermal and exit 
velocities
– 88D + 90D resonance is 

a collision process.
– Exit velocity of        

88D + 90D
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– Exit velocity of        
17±3 cm/s
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Choosing n for Molecular States Choosing n for Molecular States 

• Lower principal quantum 
number advantageousfor 
measurements of Coulomb 
repulsion for bound states.
– Lower n → resonances are 

Cs 65D + 67D
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– Lower n → resonances are 
farther from atomic lines

• Pros: 
– Less atomic background 

signal

– Deeper wells

• Con:

– Less oscillator strength



Ion Rates and TOF Velocity Ion Rates and TOF Velocity 
DistributionsDistributions
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• Ion rate is quadratic

• Coulomb repulsion easily resolved 
from TOF distributions

– Black: atomic state

– Red: molecular resonance
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▼63D+65D
∆ 64D+66D
○ 65D+67D
■ 66D+68D

Delay = 38 µs
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Width vs. Delay MeasurementsWidth vs. Delay Measurements
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• The red line is a Monte Carlo simulation of collision with thermal velocity 
recoil.
• Circles are molecule data
• Triangles are atomic data (dashed line is fit to thermal expansion)

ε = 224 mV/cm ε = 205 mV/cm ε = 190 mV/cm ε = 158 mV/cm



Future DirectionsFuture Directions

• Investigate angular distribution of Macrodimers
– 3D imaging to study applied E spatial dependence

• Measure macrodimerlifetimeslifetimesby observing 
state distribution of products
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state distribution of products

• Perform detailed spectroscopy of wells
– Electric field dependence of wells
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The GroupThe Group

• James Shaffer
– Arne Schwettmann: contributed calculations of 

pair interactions

– Jonathan Tallant: assisted with experiments
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– Jonathan Tallant: assisted with experiments

– Donald Boothe: currently assisting Arne with 
calculations
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Pair ExcitationPair Excitation

• Near resonant 2-
photon transition
– Excitation rate 

increased due to 
proximity to nearest 
atomic duplicate pair 
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atomic duplicate pair 
state

– Pair interact strongly 
at short R and mixes in 
nD state character

– Excitation rate higher 
for higher n
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