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Introduction

» Non-Abelian anyons are believed to exist in certain
gapped two dimensional systems:
- Fractional Quantum Hall Effect (v=5/2, 12/5, ...?)

- ruthenates, topological insulators, rapidly rotating bose
condensates, quantum loop gases/string nets?

* |f they exist, they could have application in guantum
computation, providing naturally (“topologically
protected”) fault-tolerant hardware.

« Assuming we have them at our disposal, what
operations are necessary to implement topological
guantum computation?



Particle Exchange “Statistics”
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Particle Exchange “Statistics”

AN /
N/

X1 X X1 X
R R1

l

3 (and higher) spatial dimensions:

R=R™* and R?=1

 Only initial and final positions are topologically distinguished
» Statistics characterized by permutation group S,
* Bosons and Fermions



Particle Exchange “Statistics”
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2 spatial dimensions:

R«R™

« Worldlines form topologically distinct braid configurations
» Statistics characterized by braid group B,
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Particle Exchange “Statistics”

AN /
N/

X1 X X1 X
R R1

l

2 spatial dimensions:

R«R™

« Worldlines form topologically distinct braid configurations
» Statistics characterized by braid group B,
* This gives...



Braiding “Statistics™

One dim unitary reps of B, assign a phase to each braid generator:

UR]¥)=€e"|¥) = Abeliananyons

(bosons: =0, fermions : & =)

Higher dim reps of B, mean Hilbert space is multi-dimensional,
and unitary matrices are assigned to braid generators:

UIR]Y,) = Zuaﬂ‘ ‘P/s> — non-Abelian anyons!
5




Toy model of Abelian Anyons:
charge q - flux ® composites

Aharonov - Bohmeffect : 6 =q®



Physical Anyons: Fractional Quantum Hall
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non-Abelian anyons

Localized topological charge: O

Non-local collective topological charge: C
(multiple values are possible)
C
Fusion rules: axb = Z N..C
C
a b

ang. mom. analog: =X+ =0+1



Ising anyons

-v=2 FQH (Moore-Read 91)

-v =22and other 2LL FQH?(PB and Slingerlan d "07)

- Kitaev honeycomb, topological insulators, ruthenates?

Topological charge types: |, o, v
Fusion rules::
| | | Z

"i’o A A *
% % o o o o

wxy =| oxo=I|+y



Fibonacci anyons
-v =% FQH? (Read - Rezayi 98)
-string nets? (Levin - Wen 04, Fendley et.al. 08)

Particle types: I, ¢
Fusion rules :

I I g



Topological Quantum Computation

(Kitaev, Preskill, Freedman, Larsen, Wang)
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Topological Protection!

Ising: a=o,c,=1,c =y

Fib: a=¢, C,=1,C=¢



Topological Quantum Computation

(Kitaev, Preskill, Freedman, Larsen, Wang)
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(Bonesteel, et. al.)

Is braiding computationally universal?

Ising: not quite Fib: yes!

(must be supplemented)



Topological Quantum Computation

(Kitaev, Preskill, Freedman, Larsen, Wang)
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Topological Charge Measurement
(measures anyonic state)

I, =3y, 3,c)(a, i
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Topological Charge Measurement

Interferometer

INt contact

e.g. FQH double po




FQH interferometer

Willett, et. al. 08
for v=5/2

(also progress by: Marcus, Eisenstein,
Kang, Heiblum, Goldman, etc.)




Quantum State Teleportation
(for spin Y2 systems)
Entanglement Resource: maximally entangled Bell states
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Quantum State Teleportation

(for spin %2 systems)
Entanglement Resource: maximally entangled Bell pair

2 2

‘®o>:‘%’%;o>:v

0

Want to teleport; ‘w> =y, ‘T> n W¢‘ i,> —

Form:  |w),|Dy),, = 6\/:

and perform a measurement on spins 12




Quantum State Teleportation

(for spin Y2 systems)
Measurement

‘1//>1‘CD0>23



Quantum State Teleportation

(for spin %2 systems)

Measurement

HSZ) : ‘WM (D0>23

Now send two bits of classical info (the measurement
result 1 ) from Alice to Bob and “fix” the state by
applying the transformation &, to spin 3



Quantum State Teleportation

(for spin %2 systems)

Measurement
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Now send two bits of classical info (the measurement
result 1 ) from Alice to Bob and “fix” the state by
applying the transformation &, to spin 3



Quantum State Teleportation

(for spin %2 systems)
Alternative “fix’’:

Recombine and measure

the state of spins 23 1 O

HSZ) :‘W>1‘(D0>23
—|®,) o, v),

12 H




Quantum State Teleportation

(for spin %2 systems)
Alternative “fix’’:

Recombine and measure
the state of spins 23 1

Then try again:

““523)4_“22) :‘W>1‘Cbo>23

If measurement outcome is g, =0 then STOP! (*success”
If not REPEAT.



Quantum State Teleportation
(for spin %2 systems)
“Forced

Measurement’

‘W>1‘CDO>23



Quantum State Teleportation
(for spin %2 systems)
“Forced

T1(12) — (12) (23) (23)y1(12)
Measurement” g7 =112, 107 1171

Uy =0""v, Vo H
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ﬁng) : ‘ W>1‘ (D0>23

= |@,),,|¥), =

“Success” occurs with probability =+ for each repeat try.



Anyonic State Teleportation

Entanglement Resource: maximally entangled anyon pair
a a

a,8,0) = v

Want to teleport: ‘W> —

a

a a a

.- g

and perform Forced Measurement on anyons 12

Form: \W>l



Anyonic State Teleportation

Forced
Measurement




Anyonic State Teleportation

Forced % = HSHZLOH(V?) - .ngzs)nglz)
Measurement

a a a

—|a,a0),,|y), =

1
d,

“Success” occurs with probability > for each repeat try.



What good is this if we want to
braid computational anyons?



Use a maximally entangled pair and “forced
measurements’ for a series of teleportations




Use a maximally entangled pair and “forced
measurements’ for a series of teleportations




Use a maximally entangled pair and “forced
measurements’ for a series of teleportations




Use a maximally entangled pair and “forced
measurements’ for a series of teleportations




Measurement Simulated Braiding!

(14)  77(23) 11 (3417 (13)
R ~ TT2ITTETTS



In FQH, for example




In FQH, for example




In FQH, for example




In FQH, for example




Topological Quantum Computation
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Measurement-Only Topological
Quantum Computation
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l <> Topological Charge Measurement
L/

—” /= <> Topological Charge Measurement




Conclusion

Anyons could provide a quantum computer.
Teleportation has anyonic counterpart.

Bounded, adaptive, non-demolitional
measurements can generate the braiding
transformations used in TQC.

Stationary anyons hopefully makes life easier
for experimental realization.

FQH interferometer technology is rapidly
progressing.



