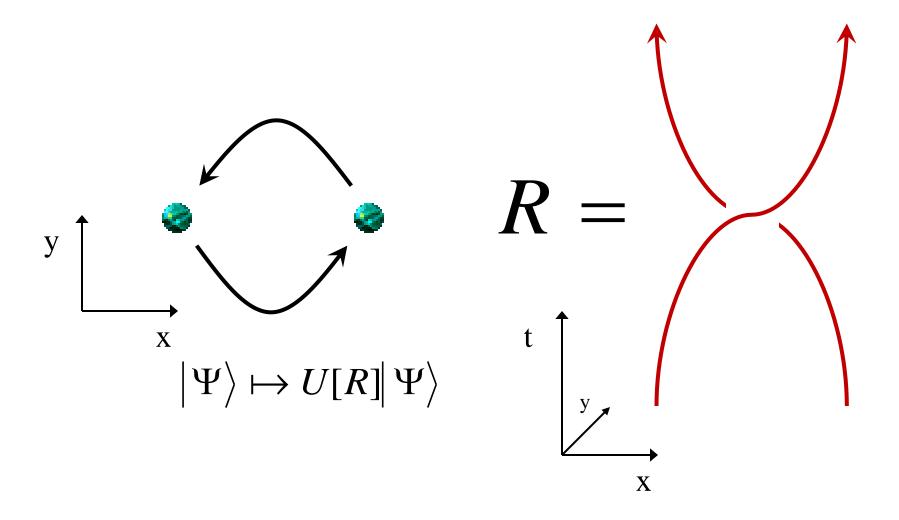
Measurement-Only Topological Quantum Computation

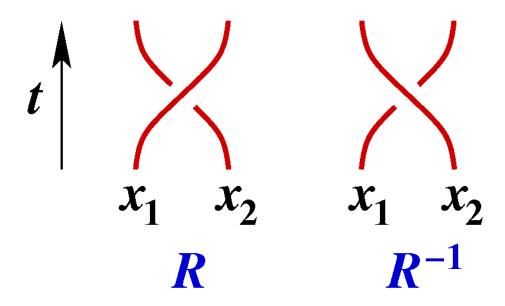
Parsa Bonderson
Microsoft Station Q
University of Virginia Condensed Matter Seminar
October 2, 2008

work done in collaboration with:
Mike Freedman and Chetan Nayak
arXiv:0802.0279 (PRL '08) and arXiv:0808.1933

Introduction

- Non-Abelian anyons are believed to exist in certain gapped two dimensional systems:
 - Fractional Quantum Hall Effect (v=5/2, 12/5, ...?)
 - ruthenates, topological insulators, rapidly rotating bose condensates, quantum loop gases/string nets?
- If they exist, they could have application in quantum computation, providing naturally ("topologically protected") fault-tolerant hardware.
- Assuming we have them at our disposal, what operations are necessary to implement topological quantum computation?

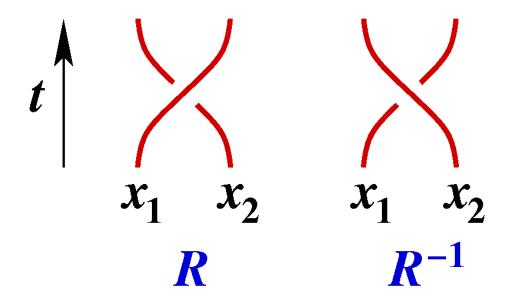




3 (and higher) spatial dimensions:

$$R = R^{-1}$$
 and $R^2 = 1$

- Only initial and final positions are topologically distinguished
- Statistics characterized by permutation group S_n
- Bosons and Fermions

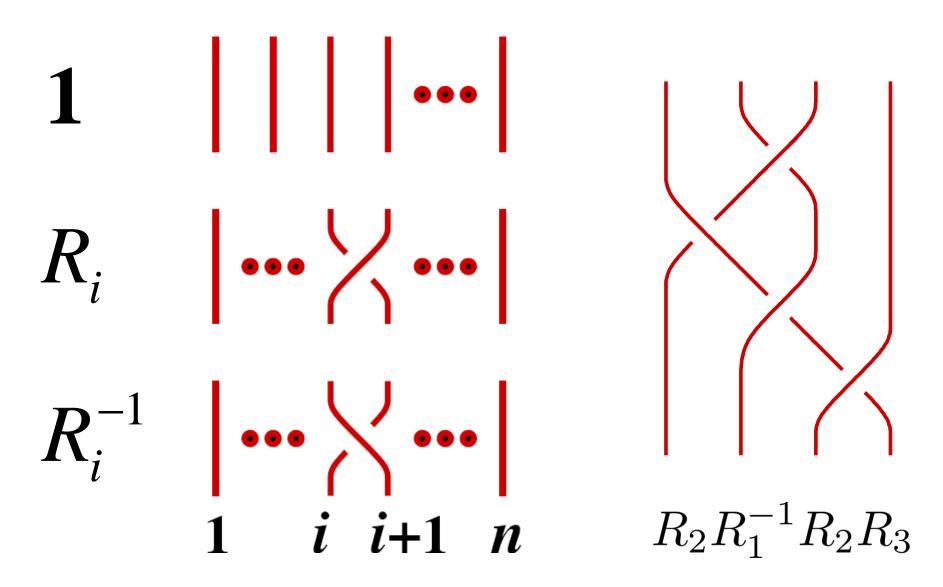


2 spatial dimensions:

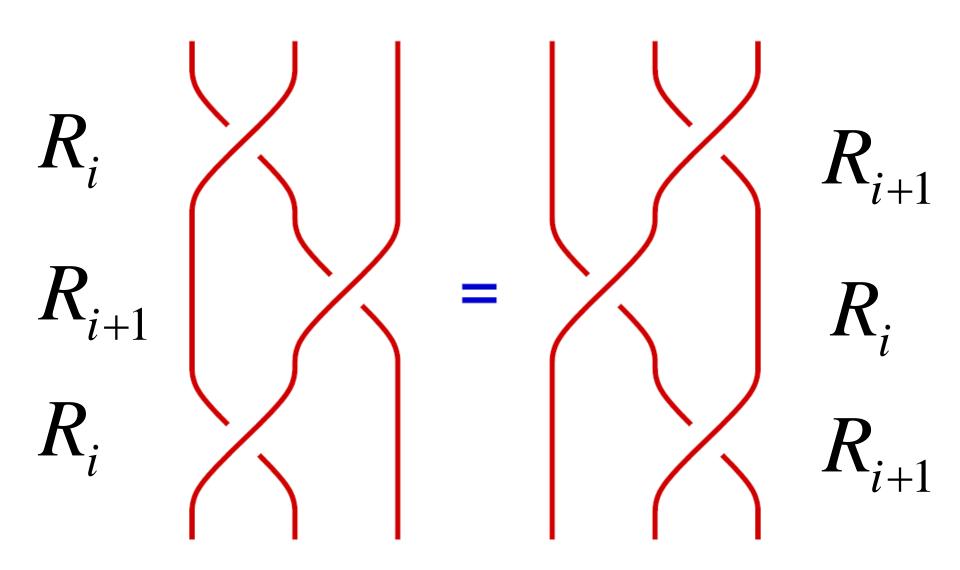
$$R \neq R^{-1}$$

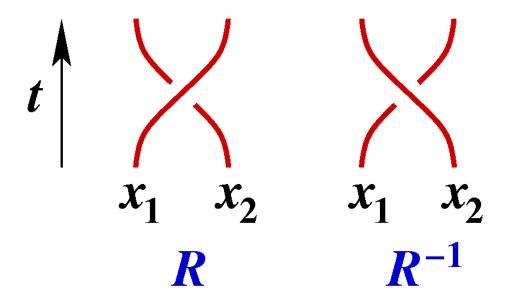
- Worldlines form topologically distinct braid configurations
- Statistics characterized by braid group B_n

(n strand) braid group B_n



Yang - Baxter constraint: $R_i R_{i+1} R_i = R_{i+1} R_i R_{i+1}$





2 spatial dimensions:

$$R \neq R^{-1}$$

- Worldlines form topologically distinct braid configurations
- Statistics characterized by braid group B_n
- This gives...

Braiding "Statistics"

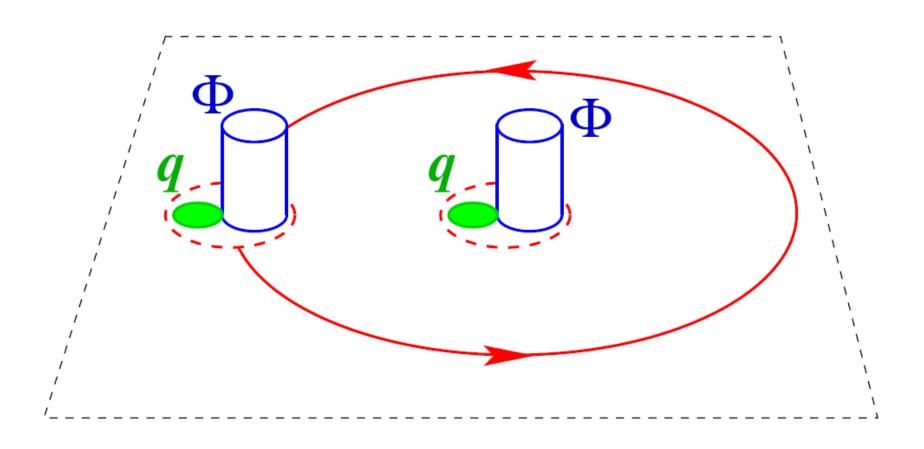
One dim unitary reps of B_n assign a phase to each braid generator:

$$U[R_i] |\Psi\rangle = e^{i\theta} |\Psi\rangle$$
 \Rightarrow Abelian anyons (bosons: $\theta = 0$, fermions: $\theta = \pi$)

Higher dim reps of B_n mean Hilbert space is multi-dimensional, and unitary <u>matrices</u> are assigned to braid generators:

$$U[R_i] |\Psi_{\alpha}\rangle = \sum_{\beta} U_{\alpha\beta} |\Psi_{\beta}\rangle \Rightarrow \text{non-Abelian anyons!}$$

Toy model of Abelian Anyons: charge q - flux Φ composites

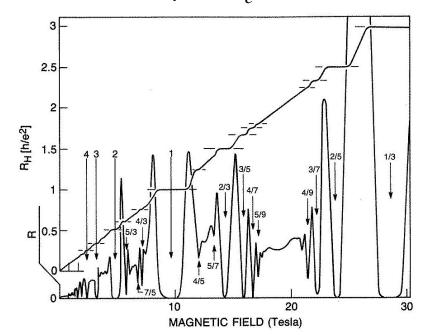


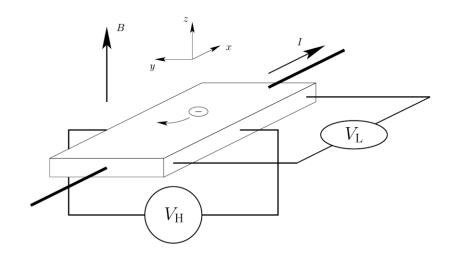
Aharonov - Bohm effect : $\theta = q\Phi$

Physical Anyons: Fractional Quantum Hall

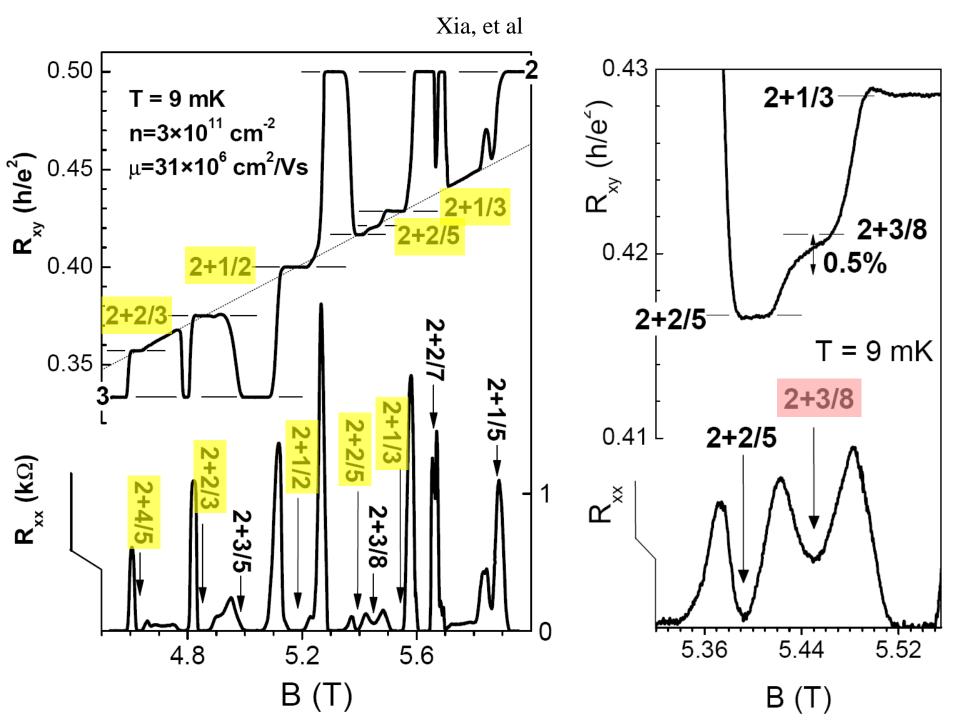
- 2DEG
- large B field (~ 10T)
- low temp (< 1K)
- gapped (incompressible)
- quantized filling fractions

$$v = \frac{n}{m}, \quad R_{xy} = \frac{1}{v} \frac{h}{e^2}, \quad R_{xx} = 0$$



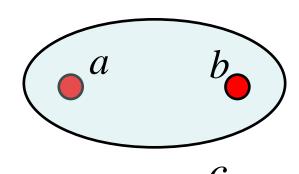


- fractionally charged quasiparticles
- Abelian anyons at most filling fractions $\theta = \pi \frac{p}{m}$
- non-Abelian anyons in 2^{nd} Landau level, e.g. v=5/2, 12/5, ...

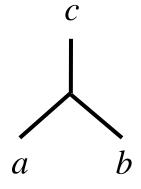


non-Abelian anyons

Localized topological charge:



Non-local collective topological charge: (multiple values are possible)



Fusion rules:
$$a \times b = \sum_{c} N_{ab}^{c} c$$

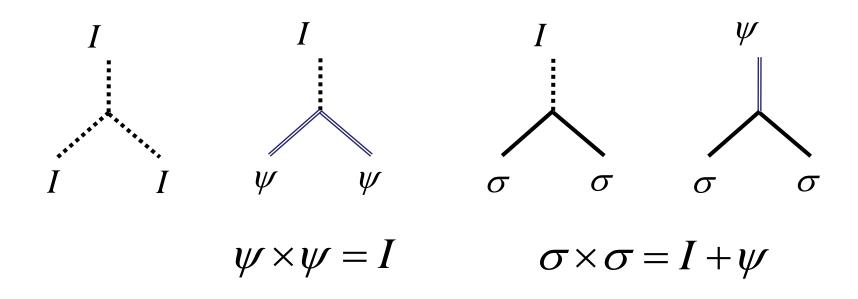
ang. mom. analog: $\frac{1}{2} \times \frac{1}{2} = 0 + 1$

Ising anyons

- $-\nu = \frac{5}{2}$ FQH (Moore-Read `91)
- $-\nu = \frac{12}{5}$ and other 2LL FQH?(PB and Slingerlan d`07)
- Kitaev honey comb, topological insulators, ruthenates?

Topological charge types: I, σ, ψ

Fusion rules:

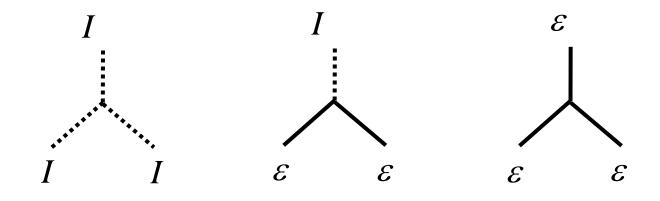


Fibonacci anyons

- $-\nu = \frac{12}{5}$ FQH? (Read Rezayi`98)
- string nets? (Levin Wen `04, Fendley et. al. `08)

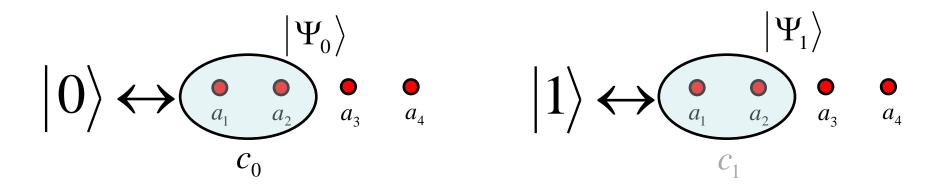
Particle types: I, ε

Fusion rules:



$$\varepsilon \times \varepsilon = I + \varepsilon$$

(Kitaev, Preskill, Freedman, Larsen, Wang)



Topological Protection!

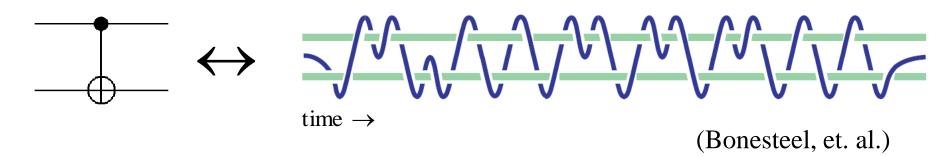
Ising:
$$a = \sigma$$
, $c_0 = I$, $c_1 = \psi$

Fib:
$$a = \varepsilon$$
, $c_0 = I$, $c_1 = \varepsilon$

(Kitaev, Preskill, Freedman, Larsen, Wang)

$$|\Psi_{0}\rangle \qquad |\Psi_{1}\rangle$$

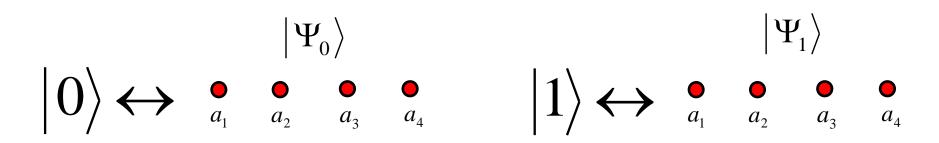
$$|0\rangle \longleftrightarrow a_{1} \quad a_{2} \quad a_{3} \quad a_{4} \qquad |1\rangle \longleftrightarrow a_{1} \quad a_{2} \quad a_{3} \quad a_{4}$$

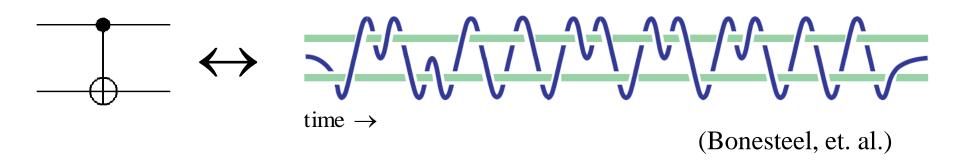


Is braiding computationally universal?

Ising: not quite Fib: yes! (must be supplemented)

(Kitaev, Preskill, Freedman, Larsen, Wang)

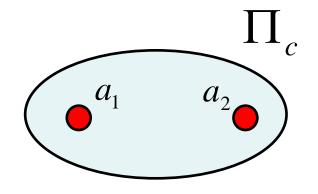




Topological Charge Measurement (measures anyonic state)

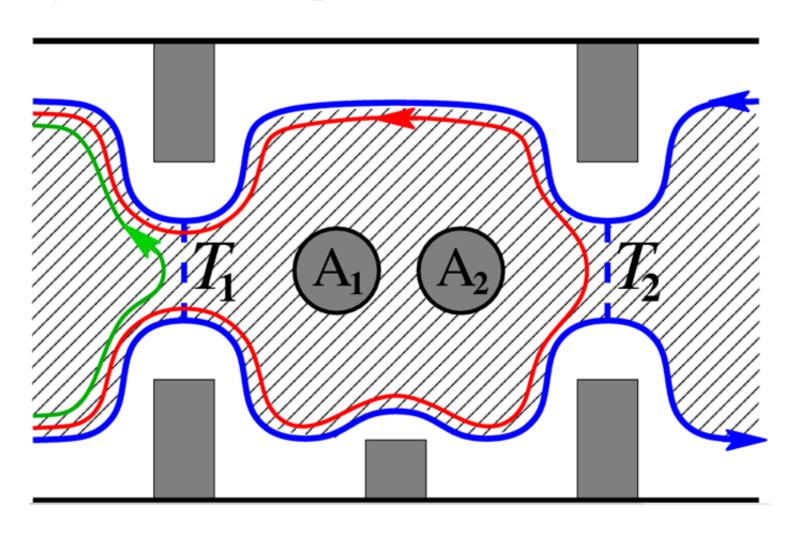
$$\Pi_c = |a_1, a_2; c\rangle\langle a_1, a_2; c|$$

$$|\Psi\rangle \mapsto \frac{\Pi_c |\Psi\rangle}{\langle \Psi | \Pi_c | \Psi\rangle}$$

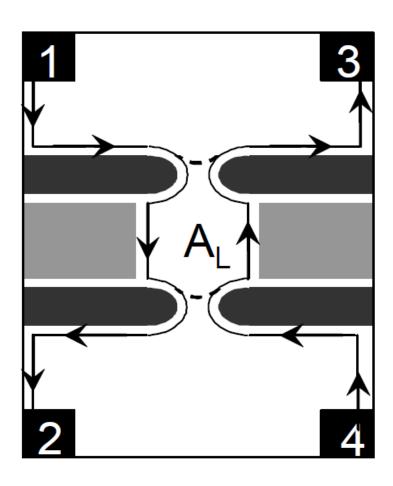


Topological Charge Measurement

e.g. FQH double point contact interferometer

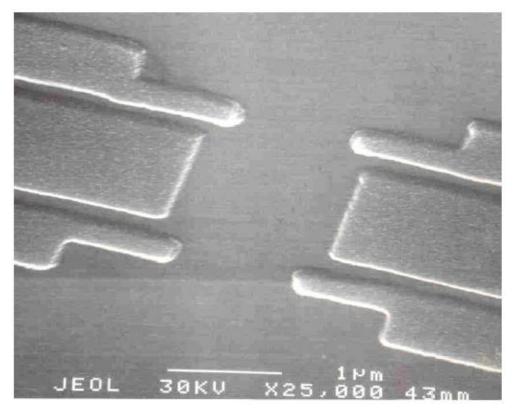


FQH interferometer



Willett, et. al. $^{\circ}08$ for v=5/2

(also progress by: Marcus, Eisenstein, Kang, Heiblum, Goldman, etc.)



(for spin ½ systems)

Entanglement Resource: maximally entangled Bell states

$$\begin{aligned} \left| \Psi^{-} \right\rangle &= \frac{1}{\sqrt{2}} \left(\left| \uparrow \downarrow \right\rangle - \left| \downarrow \uparrow \right\rangle \right) = \mathbf{1} \otimes \sigma_{0} \left| \Psi^{-} \right\rangle \\ \left| \Phi^{-} \right\rangle &= \frac{1}{\sqrt{2}} \left(\left| \uparrow \uparrow \right\rangle - \left| \downarrow \downarrow \right\rangle \right) = \mathbf{1} \otimes \sigma_{1} \left| \Psi^{-} \right\rangle \\ \left| \Phi^{+} \right\rangle &= \frac{1}{\sqrt{2}} \left(\left| \uparrow \uparrow \right\rangle + \left| \downarrow \downarrow \right\rangle \right) = i\mathbf{1} \otimes \sigma_{2} \left| \Psi^{-} \right\rangle \\ \left| \Psi^{+} \right\rangle &= \frac{1}{\sqrt{2}} \left(\left| \uparrow \downarrow \right\rangle + \left| \downarrow \uparrow \right\rangle \right) = \mathbf{1} \otimes \sigma_{3} \left| \Psi^{-} \right\rangle \end{aligned}$$

$$|\Phi_{\mu}\rangle = \mathbf{1} \otimes \sigma_{\mu} |\Psi^{-}\rangle \qquad \mu = 0,1,2,3$$

(for spin ½ systems)

Entanglement Resource: maximally entangled Bell pair

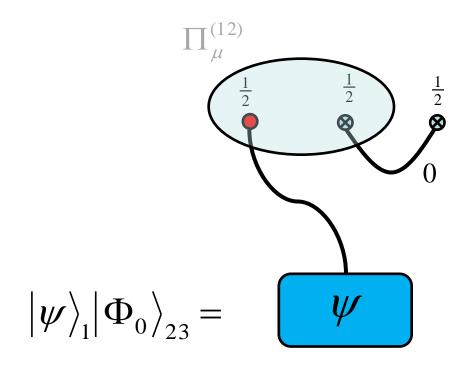
$$|\Phi_{0}\rangle = |\frac{1}{2}, \frac{1}{2}; 0\rangle = \sqrt[\frac{1}{2}]{2}$$
Want to teleport:
$$|\psi\rangle = \psi_{\uparrow}|\uparrow\rangle + \psi_{\downarrow}|\downarrow\rangle = \psi_{\uparrow}|\uparrow\rangle + \psi_{\downarrow}|\downarrow\rangle = \psi_{\uparrow}|\uparrow\rangle$$

Form:
$$|\psi\rangle_1|\Phi_0\rangle_{23} = \psi$$

and perform a measurement on spins 12

(for spin ½ systems)

Measurement



(for spin ½ systems)

Measurement

$$\Pi_{\mu}^{(12)}: |\psi\rangle_{1} |\Phi_{0}\rangle_{23}$$

$$\mapsto |\Phi_{\mu}\rangle_{12} \sigma_{\mu} |\psi\rangle_{3} = \sigma_{\mu} \psi$$

Now send two bits of classical info (the measurement result μ) from Alice to Bob and "fix" the state by applying the transformation σ_{μ} to spin 3

(for spin ½ systems)

Measurement

$$\sigma_{\mu}^{(3)}\Pi_{\mu}^{(12)}:|\psi\rangle_{1}|\Phi_{0}\rangle_{23}$$

$$\mapsto |\Phi_{\mu}\rangle_{12}|\psi\rangle_{3} = \psi$$

Now send two bits of classical info (the measurement result μ) from Alice to Bob and "fix" the state by applying the transformation σ_{μ} to spin 3

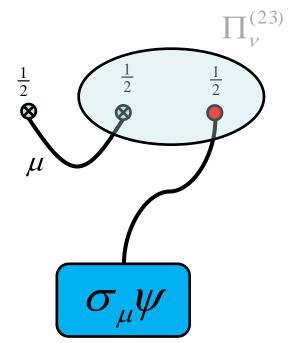
(for spin ½ systems)

Alternative "fix":

Recombine and measure the state of spins 23

$$\Pi_{\mu}^{(12)}: |\psi\rangle_{1} |\Phi_{0}\rangle_{23}$$

$$\mapsto |\Phi_{\mu}\rangle_{12} \sigma_{\mu} |\psi\rangle_{3} =$$



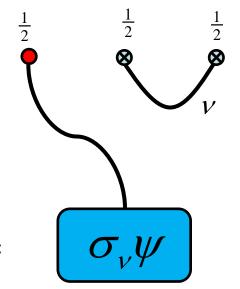
(for spin ½ systems)

Alternative "fix":

Recombine and measure the state of spins 23

Then try again:

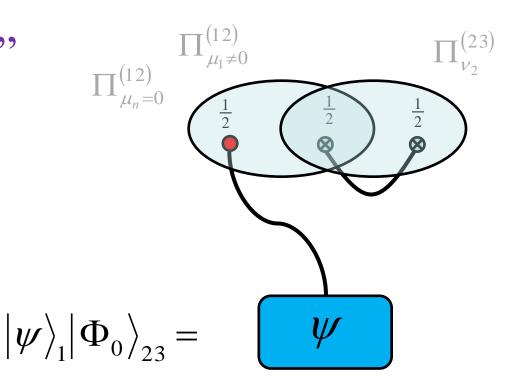
$$\begin{split} \Pi_{\nu}^{(23)} \Pi_{\mu}^{(12)} : & \left| \psi \right\rangle_{1} \middle| \Phi_{0} \right\rangle_{23} \\ & \longmapsto \sigma_{\nu} \middle| \psi \right\rangle_{1} \middle| \Phi_{\nu} \right\rangle_{23} = \end{split}$$



If measurement outcome is $\mu_n = 0$ then STOP! ("success") If not REPEAT.

(for spin ½ systems)

"Forced Measurement"



(for spin ½ systems)

"Forced

Measurement"
$$\Pi_0^{(12)} \equiv \Pi_{\mu_n=0}^{(12)} \Pi_{\nu_n}^{(23)} \dots \Pi_{\nu_2}^{(23)} \Pi_{\mu_1}^{(12)}$$

$$\begin{split} \breve{\Pi}_0^{(12)} : |\psi\rangle_1 |\Phi_0\rangle_{23} \\ \mapsto |\Phi_0\rangle_{12} |\psi\rangle_3 = \end{split}$$

"Success" occurs with probability $=\frac{1}{4}$ for each repeat try.

Anyonic State Teleportation

Entanglement Resource: maximally entangled anyon pair

$$|\overline{a},a;0\rangle =$$

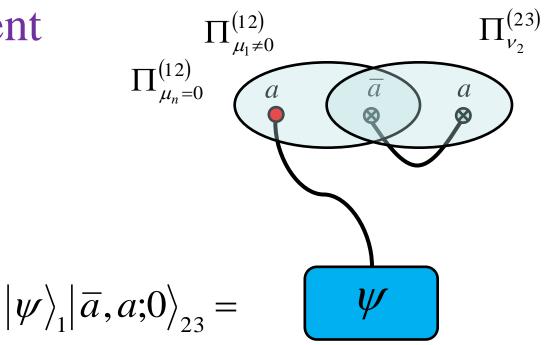
Want to teleport: $|\psi\rangle =$

Form: $|\psi\rangle_1|\overline{a},a;0\rangle_{23} =$

and perform Forced Measurement on anyons 12

Anyonic State Teleportation

Forced Measurement



Anyonic State Teleportation

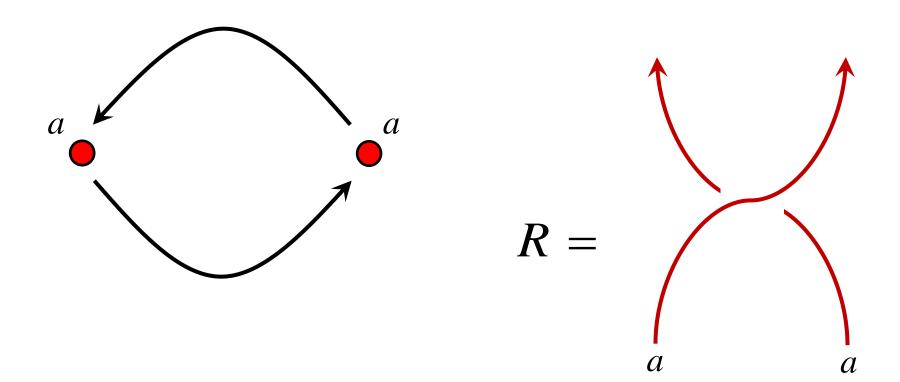
Forced Measurement

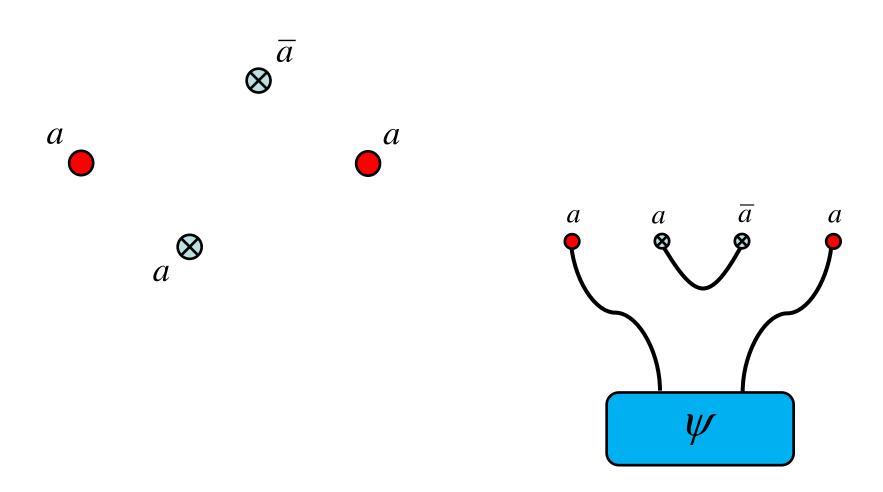
$$\widetilde{\Pi}_{0}^{(12)} \equiv \Pi_{\mu_{n}=0}^{(12)} \Pi_{\nu_{n}}^{(23)} \dots \Pi_{\nu_{2}}^{(23)} \Pi_{\mu_{1}}^{(12)}$$

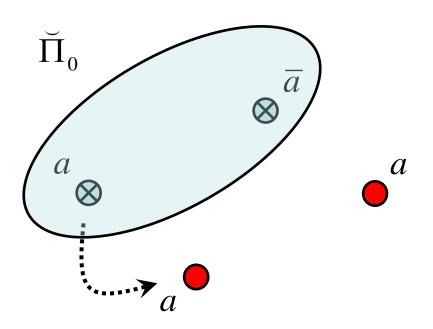
$$\widetilde{\Pi}_{0}^{(12)}: |\psi\rangle_{1} |\overline{a}, a; 0\rangle_{23}
\mapsto |a, \overline{a}; 0\rangle_{12} |\psi\rangle_{3} =$$

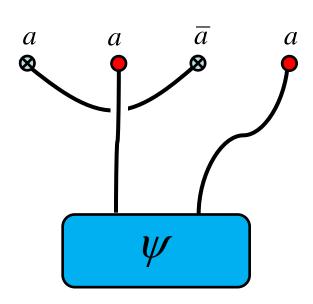
"Success" occurs with probability $\geq \frac{1}{d^2}$ for each repeat try.

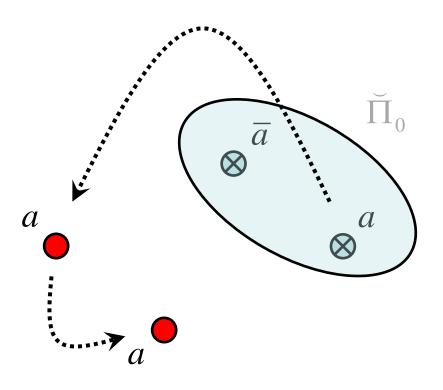
What good is this if we want to braid computational anyons?

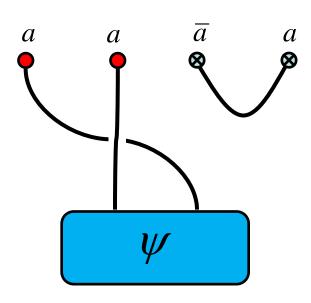


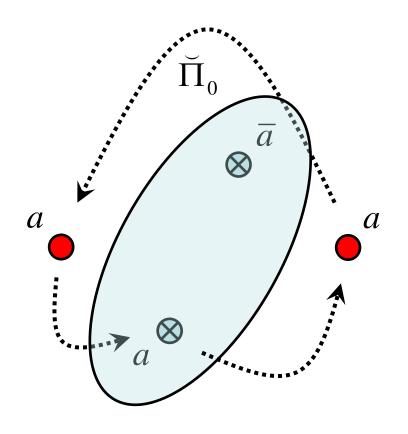


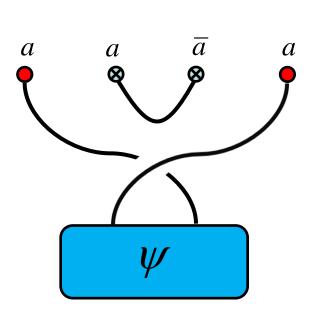




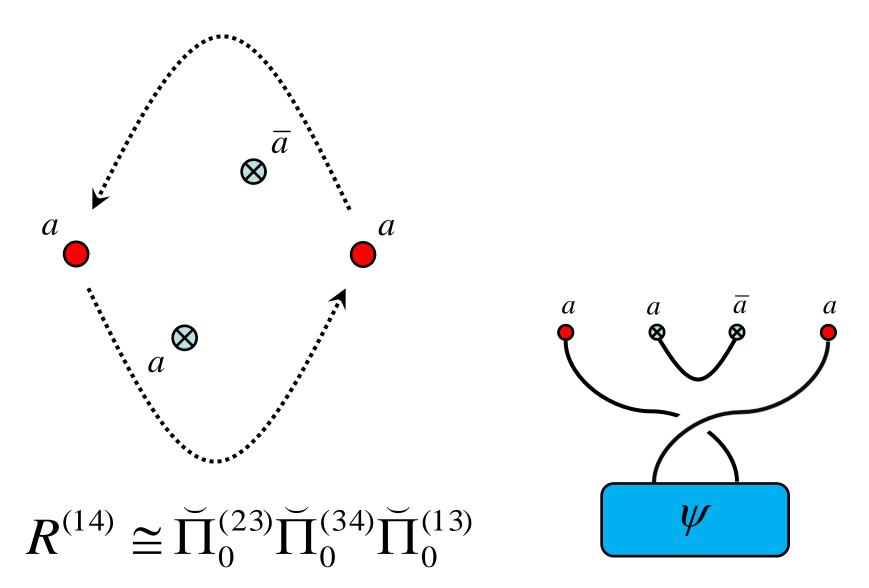




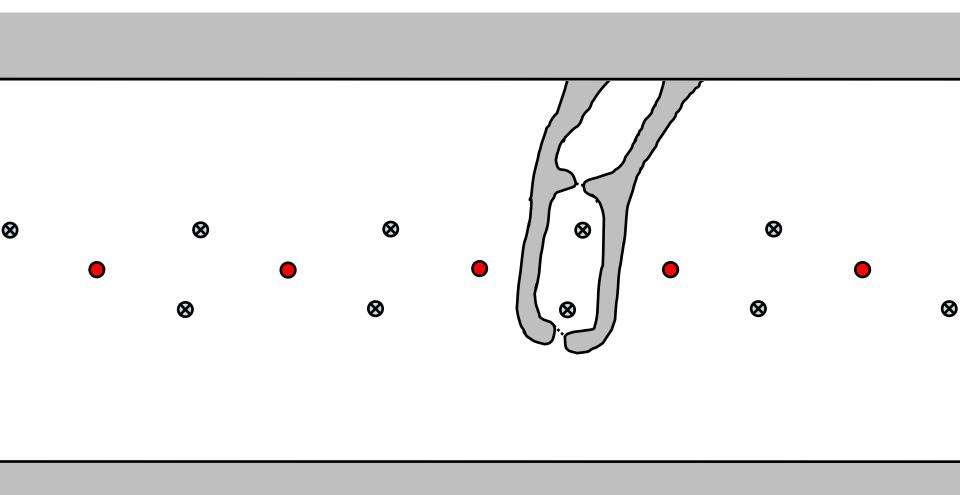




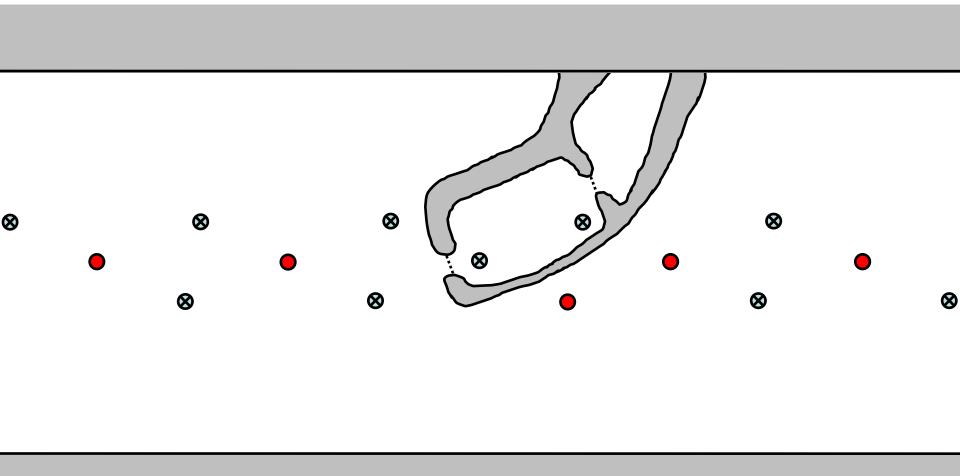
Measurement Simulated Braiding!



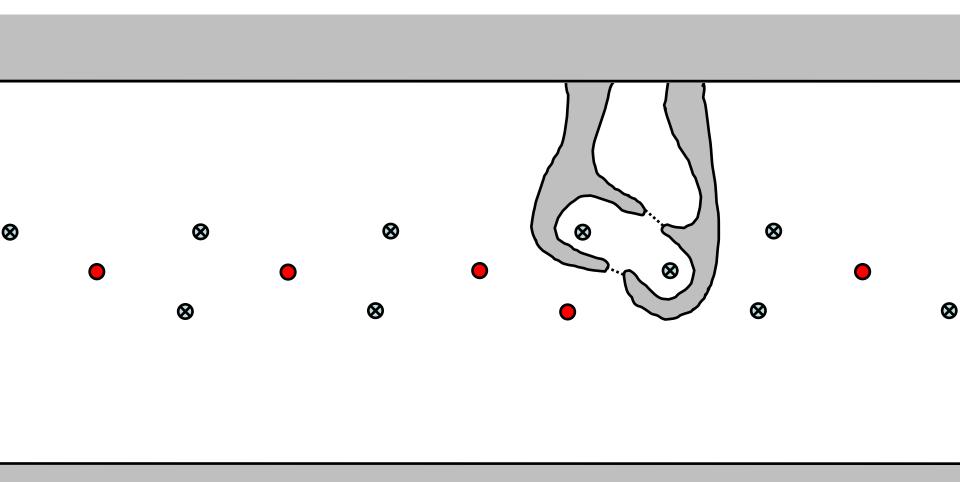
in FQH, for example



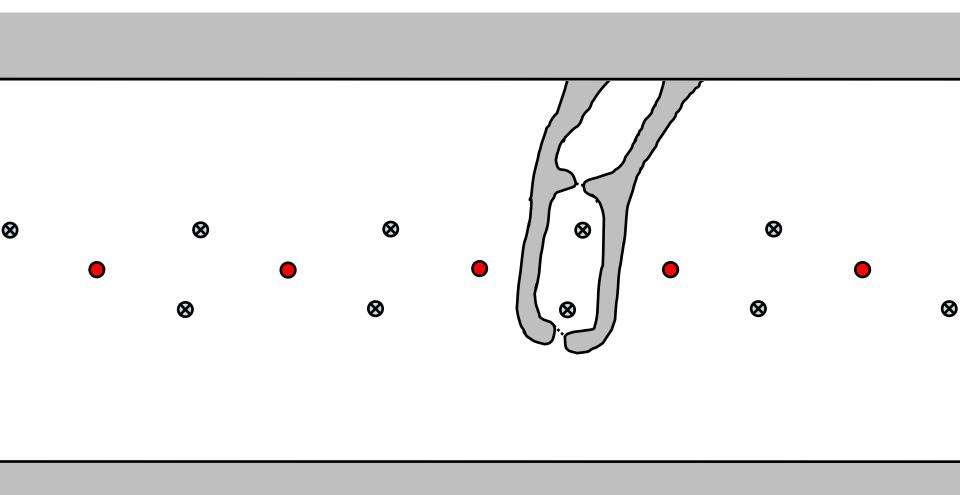
in FQH, for example

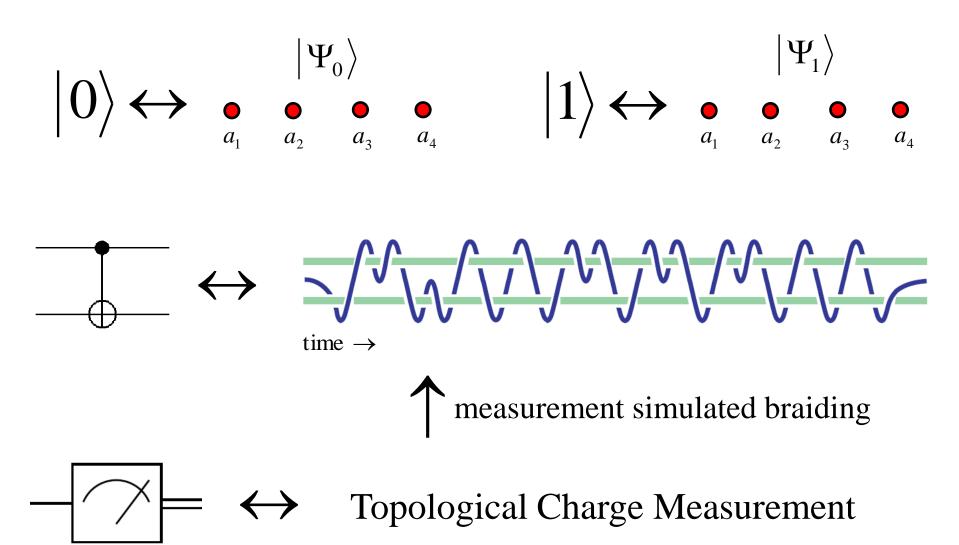


in FQH, for example



in FQH, for example

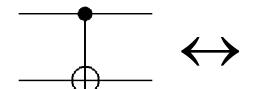




Measurement-Only Topological Quantum Computation

$$|\Psi_0\rangle \longleftrightarrow |\Psi_0\rangle \\ |0\rangle \longleftrightarrow |a_1 \quad a_2 \quad a_3 \quad a_4$$

$$|1\rangle \longleftrightarrow |a_1 \quad a_2 \quad a_3 \quad a_4$$



Topological Charge Measurement

← Topological Charge Measurement

Conclusion

- Anyons could provide a quantum computer.
- Teleportation has anyonic counterpart.
- Bounded, adaptive, non-demolitional measurements can generate the braiding transformations used in TQC.
- Stationary anyons hopefully makes life easier for experimental realization.
- FQH interferometer technology is rapidly progressing.