Studying Strong and Electroweak Interactions Using Electron Scattering at JLab

Xiaochao Zheng

Univ. of Virginia February 6, 2009

- Introduction electron scattering and nucleon structure
- Parity Violating DIS
 - E08-011 using a 6 GeV beam Physics and preparation status;
 - Program at the 12 GeV Upgrade
- Nucleon resonances study from pion electroproduction
- Summary of research program and outlook

Four Interactions of Our Nature

Gravitational	10 ⁻³⁸	General relativity	Well understood at large distances
Electro-Magnetic	1/137	SU(2) X U(1)	EM, weak: fully understood, but
Weak	10 ⁻⁵	gauge theory	there is room for New Physics
Strong	10 ⁻¹ ~10 ⁰	SU(3), QCD	less understood, and no analytical calculo

Electron scattering has been widely used to study

- Structure of the nucleon strong interactions, pQCD;
- (Recently) parity violation electron scattering:
 - strange-quark content of the nucleon (elastic)
 - Electroweak interactions (DIS)

Electrons (μ 's) interact with the target by exchanging a "virtual" photon;
Two variables to describe how the target behaves: $1/Q^2$ and v;

UNIVERSITY / VIRGINIA

Elastic, quasi-elastic, resonances, deep inelastic

- → (Quasi-) elastic the nucleus (nucleon) appears as a rigid body $Q^2 = 2M_{T(N)} v$
- Resonance region quarks inside the nucleon react coherently
- Deep Inelastic Score (DIS):
 Quarks start to reading the second start of the seco

<u>(highly non-pertubative,</u> <u>phenomenology models)</u>

UNIVERSITY of VIRGINIA

Elastic, quasi-elastic, resonances, deep inelastic

- (Quasi-) elastic the nucleus
 (nucleon) appears as a rigid
 body
 P²
 T(N)
 Resonance region quarks
 inside the nucleon react
 coherently
- Deep Inelastic Scattering (DIS):
 - Quarks start to react incoherently (start to see constituents of the nucleon)

(Can test pQCD)

UNIVERSITY of VIRGINIA

7/64 Xiaochao Zheng, February 2009, Collogium at UVa

(2002)010001 66, Rev.

Current Knowledge of Nucleon Unpolarized Structure

- After four decades of DIS experiments, the unpolarized structure of the nucleon is reasonably well understood (for moderate x_{Bi} region);
- Similar status for spin structure of the nucleon from polarized DIS.

UNIVERSITY / VIRGINIA

Weak Interaction in DIS (Parity Violating DIS)

What is Parity Violation

- The parity symmetry: the physical laws behind all phenomena must be the same as those behind their mirror images;
- However this symmetry is broken in weak interactions.

Chen-Ning Yang <u>1957 Nobel Prize in Physics:</u>

Tsung-Dao Lee

Chien-Shiung Wu

"for their penetrating investigation of the so-called parity laws which has led to important discoveries regarding the elementary particles"

UNIVERSITY / VIRGINIA

Xiaochao Zheng, February 2009, Colloqium at UVa 10/64

× ····

- Electromagnetic observables σ , A...
- Weak observables parity violating asymmetries (A_{PV})

(polarized beam + unpolarized target)

- Electromagnetic observables σ , A...
- Weak observables parity violating asymmetries (A_{PV})

- Electromagnetic observables σ , A...
- Weak observables parity violating asymmetries (A_{PV})

(polarized beam + unpolarized target)

(ppm="parts per million"= 10^{-6})

- Electromagnetic observables σ , A...
- Weak observables parity violating asymmetries (A_{PV})

(polarized beam + unpolarized target)

- study hadron structure
 - elastic scattering: strange form factors <u>A4(MAINZ), G0, HAPPEX (JLab)</u>,

SAMPLE (MIT/Bates)

- DIS: higher twist effects, charge symmetry violation... < <u>PVDIS</u>
- Test the electroweak standard model <u>E158(SLAC), Qweak(JLab)</u> <u>WIVERSITY/VIRGINIA</u> Xiaochao Zheng, February 2009, Colloqium at UVa 14/64

ElectroWeak Standard Model

SM works well at present energy range;

anomaly...);

UNIVERSITY / VIRGINIA

ElectroWeak Standard Model

SM works well at present energy range;

Conceptual reasons for new physics:

What happens in the "high-energy desert"?

(250 GeV ~ 5 x 10¹⁴ GeV ~ 2.4 x 10¹⁸ GeV)? GeV)? Data exist: cannot be explained by the SM (m_v , NuTeV

anomaly...);

MUNIVERSITY / VIRGINIA

ElectroWeak Standard Model

SM works well at present energy range;

Conceptual reasons for new physics:

What happens in the "high-energy desert"?

Search for Physics beyond the Standard Model

Testing the EW Standard Model – Running of $\sin^2 \theta_W$ and the NuTeV Anomaly

UNIVERSITY of VIRGINIA

Xiaochao Zheng, February 2009, Colloqium at UVa 18/64

Neutral Weak Couplings in Electron DIS

- axial electron * vector quark :
- vector electron * axial quark :

$$L_{SM}^{PV} = \frac{-G_F}{\sqrt{2}} e \gamma_{\mu} \gamma^5 e \sum_{q} C_{1q} q \gamma^{\mu} q$$
$$L_{SM}^{PV} = \frac{-G_F}{\sqrt{2}} \bar{e} \gamma_{\mu} e \sum_{q} C_{2q} \bar{q} \gamma^{\mu} \gamma^5 q$$

$$C_{1u} = g_A^e g_V^u = -\frac{1}{2} + \frac{4}{3} \sin^2(\theta_W) \qquad C_{2u} = g_V^e g_A^u = -\frac{1}{2} + 2\sin^2(\theta_W)$$
$$C_{1d} = g_A^e g_V^d = \frac{1}{2} - \frac{2}{3} \sin^2(\theta_W) \qquad C_{2d} = g_V^e g_A^d = \frac{1}{2} - 2\sin^2(\theta_W)$$

UNIVERSITY / VIRGINIA

Deuterium:

$$A_{d} = (540 \ ppm) Q^{2} \frac{2C_{1u} [1 + R_{C}(x)] - C_{1d} [1 + R_{S}(x)] + Y(2C_{2u} - C_{2d}) R_{V}(x)}{5 + R_{S}(x) + 4R_{C}(x)}$$

Deuterium:

$$A_{d} = (540 \, ppm) Q^{2} \frac{2C_{1u} [1 + R_{C}(x)] - C_{1d} [1 + R_{S}(x)] + Y (2C_{2u} - C_{2d}) R_{V}(x)}{5 + R_{S}(x) + 4R_{C}(x)}$$

New physics sensitivity: $L = L_{SM}^{PV} + L_{NEW}^{PV}$

$$L_{SM}^{PV} = \frac{-G_F}{\sqrt{2}} \bar{e} \gamma_{\mu} e \sum_{q} C_{2q} \bar{q} \gamma^{\mu} \gamma^5 q \qquad \qquad L_{NEW}^{PV} = \frac{g^2}{4\Lambda^2} \bar{e} \gamma_{\mu} e \sum_{f} h_A^q \bar{q} \gamma^{\mu} \gamma^5 q$$

g: coupling constant, Λ : mass limit, $h_A^{\ q}$: effective coefficient

Deuterium:

$$A_{d} = (540 \ ppm)Q^{2} \frac{2C_{1u}[1 + R_{c}(x)] - C_{1d}[1 + R_{s}(x)] + Y(2C_{2u} - C_{2d})R_{v}(x)}{5 + R_{s}(x) + 4R_{c}(x)}$$

New physics sensitivity: $L = L_{SM}^{PV} + L_{NEW}^{PV}$ $L_{SM}^{PV} = \frac{-G_F}{\sqrt{2}} \bar{e} \gamma_{\mu} e \sum_q C_{2q} \bar{q} \gamma^{\mu} \gamma^5 q$ $L_{NEW}^{PV} = \frac{g^2}{4\Lambda^2} \bar{e} \gamma_{\mu} e \sum_f h_A^q \bar{q} \gamma^{\mu} \gamma^5 q$

g: coupling constant, Λ : mass limit, h_{A}^{q} : effective coefficient

- Sensitive to: Z' searches, compositeness, leptoquarks
- Mass limit: $\frac{\Lambda}{g} \approx \left[\sqrt{8}G_F \left| \Delta (2C_{2u} C_{2d}) \right| \right]^{-1/2}$

UNIVERSITY of VIRGINIA

Xiaochao Zheng, February 2009, Colloqium at UVa 22/64

PV DIS and Other SM Test Experiments

UNIVERSITY of VIRGINIA

Xiaochao Zheng, February 2009, Colloqium at UVa 23/64

Deuterium:

$$\begin{split} A_{d} &= (540 \ ppm) Q^{2} \frac{2 \ C_{1u} [1 + R_{C}(x)] - C_{1d} [1 + R_{S}(x)] + Y (2 \ C_{2u} - C_{2d}) R_{V}(x)}{5 + R_{S}(x) + 4 \ R_{C}(x)} \\ R_{s}(x) &= \frac{2 [s(x) + \bar{s}(x)]}{u(x) + \bar{u}(x) + d(x) + \bar{d}(x)} \quad R_{c}(x) = \frac{2 [c(x) + \bar{c}(x)]}{u(x) + \bar{u}(x) + d(x) + \bar{d}(x)} \quad R_{V}(x) = \frac{u_{V}(x) + d_{V}(x)}{u(x) + \bar{u}(x) + d(x) + \bar{d}(x)} \end{split}$$

- Also sensitive to:
 - quark-gluon correlations (higher-twist effects)

◆ Charge symmetry violation $u^{p}(x) \neq d^{n}(x) \quad d^{p}(x) \neq u^{n}(x)$

UNIVERSITY of VIRGINIA

- ◆ 1970's, result from SLAC E122 consistent with $\sin^2\theta_W = 1/4$, established the Electroweak Standard Model; C.Y. Prescott, *et al.*, Phys. Lett. B77, 347 (1978)
- PVDIS asymmetry has the potential to explore New Physics, study hadronic effects/CSV However, hasn't been done since 1978.

- ◆ 1970's, result from SLAC E122 consistent with $\sin^2\theta_W = 1/4$, established the Electroweak Standard Model; C.Y. Prescott, *et al.*, Phys. Lett. B77, 347 (1978)
- PVDIS asymmetry has the potential to explore New Physics, study hadronic effects/CSV However, hasn't been done since 1978.
 - (Re)start PVDIS at JLab 6 & 12 GeV
 - Difficulty: separate New Physics and hadronic effects

- ◆ 1970's, result from SLAC E122 consistent with $sin^2\theta_W = 1/4$, established the Electroweak Standard Model; C.Y. Prescott, *et al.*, Phys. Lett. B77, 347 (1978)
- PVDIS asymmetry has the potential to explore New Physics, study hadronic effects/CSV However, hasn't been done since 1978.

Do a first measurement at JLab 6 GeV:

- If observe a significant deviation from the SM value, it will definitely indicate something exciting;
- Indicate either electroweak new physics, or current understanding of strong interation is worse than we thought
- New electroweak Physics

At the 6 GeV precision:

need exp confirmation

- Non-perturbative QCD (higher-twist) effects

 Likely to be small, but
- Charge symmetry violation

UNIVERSITY / VIRGINIA

Small from MRST fit (90% CL ~1%)

Xiaochao Zheng, February 2009, Colloqium at UVa 27/64

- ◆ 1970's, result from SLAC E122 consistent with $\sin^2\theta_W = 1/4$, established the Electroweak Standard Model; C.Y. Prescott, *et al.*, Phys. Lett. B77, 347 (1978)
- PVDIS asymmetry has the potential to explore New Physics, study hadronic effects/CSV However, hasn't been done since 1978.

Do a first measurement at JLab 6 GeV:

- If observe a significant deviation from the SM value, it will definitely indicate something exciting;
- Indicate either electroweak new physics, or current understanding of strong interation is worse than we thought

At 12 GeV, a larger, well-planned PVDIS program could separate all three: New Physics, HT, CSV, important information for both EW and Strong interaction study.

JLab 6 GeV Experiment 08-011

Co-spokesperson & contact: X. Zheng Co-spokesperson: P.E. Reimer, R. Michaels

(Hall-A Collaboration Experiment, approved by PAC27, re-approved by PAC33 for 32 days, rated A-)

- Use 85μ A, 6 GeV, 80% polarized beam on a 25-cm LD2 target;
- Two Hall A High Resolution Spectrometers detect scattered electrons;
- Measure PV asymmetry A_d at $Q^2=1.10$ and 1.90 GeV² to 2.7% (stat.);

 A_d at Q²=1.10 will limit the higher twist effects;

If HT is small, can extract $2C_{2u}$ -C_{2d} from A_d at Q²=1.90 to ±0.04 (or with reduced precision if higher twists are un-expectedly large)

Current Knowledge on C_{1,2q}

UNIVERSITY of VIRGINIA

Xiaochao Zheng, February 2009, Colloqium at UVa 30/64

C_{2q} from JLab E08-011

all are 1 σ limit

Xiaochao Zheng, February 2009, Collogium at UVa 31/64

The Accelerator (CEBAF)

MUNIVERSITY / VIRGINIA

Xiaochao Zheng, February 2009, Colloqium at UVa 32/64

Experimental Hall A

Overview of the Experimental Setup in Hall A

Electrons detected by the two spectrometers independently

In Addition to the Standard Setup

UNIVERSITY / VIRGINIA

Xiaochao Zheng, February 2009, Colloqium at UVa 35/64

The Collaboration

A. Afanasev, D.S. Armstrong, J. Arrington, T.D. Averett, E.J. Beise, W. Bertozzi, P.E. Bosted, H. Breuer, J.R. Calarco, A. Camsonne, G.D. Cates, J.-P. Chen, E. Chudakov, P. Decowski, X.-Y. Deng, H.-B. Ding, A. Deur, J. Erler, J.M. Finn, S. Gilad, K.A. Griffioen, K. Grimm, K. Hafidi, J.-O. Hansen, D.W. Higinbotham, R. Holmes, T. Holmstrom, R.J. Holt, J. Huang, P.M. King, W. Korsch, S. Kowalski, K. Kumar, N. Liyanage, A. Lukhanin, D.J. Mack, D.J. Margoziotis, P. Markowitz, D. McNulty, *R. Michaels*, B. Moffit, P. Monaghan,
N. Muangma, V. Nelyubin, B.E. Norum, K. Paschke, C. Perdrisat, A.J. Puckett, Y. Qiang, *P.E. Reimer*, J. Roche, A. Saha, B. Sawatzky,

N. Simicevic, J. Singh, S. Sirca, <u>A. Shahinyan</u>, R. Snyder, P. Solvignon, P.A. Souder,

N. Sparveris, <u>**R. Subedi</u>**, V. Sulkosky, W.A. Tobias, **D.-C. Wang**, K. Wang, S.P. Wells, B. Wojtsekhowski, X.-H. Zhan, *X.-C. Zheng*</u>

The Hall A Collaboration

ANL, Calstate, FIU, JLab, Kentucky, Louisiana Tech, U. of Ljubljana (Slovenia), MIT, UMD, UMass, UNH, Universidad Nacional Autonoma de Mexico, Ohio U., Randolph-Mason C., Smith C., Syracuse, Temple U., TsingHua U. (China), UVa, W&M, Yerevan Phys. Inst.(Armenia)
Design and Structure for the Fast Counting DAQ

Scaler-based:

- A double-layered lead-glass counter (PID)
- A gas cherenkov detector (PID)
- Scintillators (suppress background)
- Helicity-gated scalers count e^{-} and π
- Deadtime measured by multiple methods (goal: 0.3%)
 - Two resolution times (20, 100ns)
 - "tagger", TDC system

- Cross-check with regular DAQ at low rate (PID performance)
- Some channels with flash-ADC, allowing full sampling of signals (PID performance and pileup effects)

E08-011 DAQ Status (Jan.-Aug. 2008)

- Half-system assembled in EEL Rm 122
- Three deadtime measurements performed

E08-011 DAQ Status (Jan.-Aug. 2008)

Method I

Three deadtime measurements performed

Method III

Xiaochao Zheng, February 2009, Colloqium at UVa 39/64

E08-011 DAQ Status (Jan.-Aug. 2008)

Method I

Method II

Measured induced asymmetry, width as expected $\sqrt{1/RT}$

UNIVERSITY of VIRGINIA

E08-011 DAQ Status (Aug. 2008-Feb. 2009)

- ✓ Installed in Right HRS in Hall A Aug. 2008
- ✓ Parasitic test using cosmics until Nov. 2008
- Parasitic test using low rate electrons and pions Dec. 2008 -Feb. 2009:
 - All detectors working;
 - Can measure large (induced) asymmetries from beam;
 - Communicating with two existing DAQs.

E08-011 Plan (Mar. - Dec. 2009)

- DAQ Parasitic test using medium-rate electrons and pions Mar-May 2009
 - Cross-checking with regular HRS DAQ for PID performance, determine system characteristics;
- Duplicate the system to install in the Left HRS June-July 2009;
- Test performance with very high rate electrons (a few MHz) during HAPPEX-III — Aug.-Oct.2009.
- Run PVDIS Nov.-Dec. 2009
- Data analysis, publishing results: 1 ~ 2 years

C_{2q} from JLab E08-011

all are 1 σ limit

Xiaochao Zheng, February 2009, Colloqium at UVa 43/64

PVDIS Program at JLab 12 GeV

- Higher precision, possibly sensitive to 1) New Physics beyond the SM;
 2) Charge Symmetry Violation (CSV)
- Two approaches (conditionally approved):
 - Hall C "baseline" SHMS+HMS: PR12-07-102 (P.E. Reimer, X-C. Z, K. Paschke)

 \Rightarrow 1% on A_d, extraction of C_{2a}, sin² θ_{w} (if higher-twist and CSV are negligible);

- Hall A large acceptance "solenoid" device: PR09-012
 - A Measure A to 1% for a wide range of (x,Q²,y), clean separation of New Physics (via C_{2a} and sin² θ_{w}), HT and CSV possible;
 - * Extract d/u at large x from PVDIS on a proton target, free of nuclear effects;
 - \star Other hadronic physics study possible: Aⁿ at large x, Semi-inclusive DIS.

PVDIS Program at JLab 12 GeV

- Higher precision, possibly sensitive to 1) New Physics beyond the SM;
 2) Charge Symmetry Violation (CSV)
- Two approaches (conditionally approved):
 - Hall C "baseline" SHMS+HMS: PR12-07-102 (P.E. Reimer, X-C. Z, K. Paschke)

 $\frac{1}{2}$ 1% on A_d, extraction of C_{2q}, sin² θ_{W} (if higher-twist and CSV are negligible);

PVDIS Program at JLab 12 GeV

- Higher precision, possibly sensitive to 1) New Physics beyond the SM;
 2) Charge Symmetry Violation (CSV)
- Two approaches (conditionally approved):
 - Hall C "baseline" SHMS+HMS: PR12-07-102 (P.E. Reimer, X-C. Z, K. Paschke) \gtrsim 1% on A_d, extraction of C_{2d}, sin²θ_w (if higher-twist and CSV are negligible);
 - + Hall A large acceptance "solenoid" device: PR09-012
 - A Measure A to 1% for a wide range of (x,Q²,y), clean separation of New Physics (via C_{2a} and $sin^2\theta_w$), HT and CSV possible;
 - Extract d/u at large x from PVDIS on a proton target, free of nuclear effects;
 - $\frac{1}{2}$ Other hadronic physics study possible: A_1^n at large x, Semi-inclusive DIS.

Nucleon Resonances Study from Doubly Polarized Electron Scattering

(CLAS Collaboration Approved Analysis) Extraction of Double and Single Spin Asymmetries for pion electroproduction from NH₃ and ND₃ targets using JLab EG4 data

Co-spokespeople: Xiao-chao Zheng (UVa), Angela Biselli (Fairfield U.), Peter Bosted (JLab) and Gail Dodge (ODU)

Physics Motivation;

- EG4 Run Overview;
- Preliminary asymmetries from 3 GeV NH₃ data

Acknowledgment:

<u>EG4 spokespeople</u>: M. Battaglieri, R. De Vita, A. Deur, G. Dodge, M. Ripani, K. Slifer <u>CAA Review committee</u>: D. Carman, P. Eugenio, C. Smith, M. Ungaro

Physics Motivation

Nucleon resonances form an important part of strong interaction study;

- Mostly non-perturbative, cannot use pQCD;
- Too light for lattice calculation;
- Must use effective theories or models:
 - Constituent Quark Model: resonance amplitudes, helicity structure... (not on interference terms)
 - Phenomenology models: MAID, SAID, DMT, JANR, Sato-Lee (Δ)
 - May compare to Chiral Perturbation Theory (very low Q^2 only).
- Spin observables (asymmetries) provide constraints on: spin-dependent amplitudes, interference terms...

Observables in Pion Electroproduction

Single-target $A_t = \frac{d\sigma_t}{d\sigma_{unp}} = \frac{\sigma(+h_N) - \sigma(-h_N)}{\sigma(+h_N) + \sigma(-h_N)}$ → Double beam-target
only accessible from polarized target data

$$A_{et} = \frac{d\sigma_{et}}{d\sigma_{unp}} = \frac{\sigma(+h_{e}, +h_{N}) + \sigma(-h_{e}, -h_{N}) - \sigma(+h_{e}, -h_{N}) - \sigma(-h_{e}, +h_{N})}{\sigma(+h_{e}, +h_{N}) + \sigma(-h_{e}, -h_{N}) + \sigma(+h_{e}, -h_{N}) + \sigma(-h_{e}, +h_{N})}$$

UNIVERSITY *of* **VIRGINIA**

Xiaochao Zheng, February 2009, Colloqium at UVa 50/64

EG4 Exclusive Channel Analysis

- Extract At and Aet from EG4 data for:
 - NH3 target: $\vec{e} \, \vec{p} \rightarrow e' \, \pi^+ n$ and $\vec{e} \, \vec{p} \rightarrow e' \, \pi^0 p$
 - ND3 target: $\vec{e} \, \vec{n} \rightarrow e' \pi^{-} p$ and $\vec{e} \, \vec{p} \rightarrow e' \pi^{+} n$
- Study dependence on Q^2 , W, ϕ^* and $\cos \theta^*$ (binned in 4 simultaneously)
- Previous/other analyses: EG1a, EG1b;
- Our new results will help to constrain models at low Q^2 ;
 - Can compare to future real photon experiment, study transition from virtual to real photons;
 - Data on the neutron are rare.

EG4 Kinematic Coverage

Extensive running at 1.3 GeV.

UNIVERSITY of VIRGINIA

Analysis and Very Preliminary Results for $\vec{e} \, \vec{p} \rightarrow e' \pi^+ n$ using 3 GeV NH3 Data

Xiaochao Zheng, February 2009, Colloqium at UVa 54/64

Xiaochao Zheng, February 2009, Collogium at UVa 56/64

Xiaochao Zheng, February 2009, Collogium at UVa 57/64

Xiaochao Zheng, February 2009, Colloqium at UVa 60/64

Aet vs. ϕ^*

 Q^2 bins

Summary (2009-2013)

- Parity Violating DIS has the potential to study the Electro-weak Standard Model, and nucleon structure/QCD:
 - → First step JLab 6 GeV (E08-011): measure A_d at two Q^2 to ~2.7% (stat.), could extract $\Delta(2C_{2u}-C_{2d}) = 0.04$ (impact on EW SM test);
 - DAQ construction and tests underway;
 - Will run in Nov.-Dec. 2009, data analysis/publishing before 2012.
- Extraction of Aet and At for single-pion electro-production $\vec{e} \, \vec{p} \to e' \, \pi^+ n$ from NH3 and $\vec{e} \, \vec{n} \to e' \, \pi^- \, p$ from ND3 using CLAS EG4 data;
 - Analysis tools developed; preliminary asymmetries at the highest beam energy look very promising;
 - Will complete the analysis for 4 lower energies before 2012/13; Contribute to low Q² resonance structure study; May compare to chiral perturbation theory.

UNIVERSITY of VIRGINIA

Summary (2013 -)

- Measurement of neutron asymmetry Aⁿ in the valence quark region at JLab 12 GeV
 - Flagship experiment
 - Will be one of the first experiments to run (~2014?)
- PVDIS at 12 GeV
 - Ultimate goal: clean separation of New Physics and CSV (2015 or later?)

Current Knowledge on Weak Coupling Coeffecients

 $C_{1q} = g_A^e g_V^q$ $C_{2q} = g_V^e g_A^q$ $C_{3q} = g_A^e g_A^q$

Facility	Process	Q^2	C _{iq} Combination	Result	SM Value
SLAC	e⁻-D DIS	1.39	$2C_{1u}-C_{1d}$	-0.90± 0.17	-0.7185
SLAC	e⁻-D DIS	1.39	$2C_{2u}-C_{2d}$	0.62± 0.81	-0.0983
CERN	μ^{\pm} -D DIS	34	$0.66(2C_{2u}-C_{2d})+2C_{3u}-C_{3d}$	1.80± 0.83	1.4351
CERN	μ^{\pm} -D DIS	66	0.81(2C _{2u} -C _{2d})+2C _{3u} -C _{3d}	1.53± 0.45	1.4204
MAINZ	e-Be QE	0.20	$2.68C_{1u}$ - $0.64C_{1d}$ + $2.16C_{2u}$ - $2C_{2d}$	-0.94± 0.21	-0.8544
Bates	eC elastic	0.0225	$C_{1u} + C_{1d}$	0.138 ± 0.034	0.1528
Bates	e⁻-D QE	0.1	C_{2u} - C_{2d}	-0.042± 0.057	-0.0624
Bates	e⁻-D QE	0.04	C_{2u} - C_{2d}	-0.12± 0.074	-0.0624
JLab	e ⁻ -p elastic	0.03	$2C_{1u}+C_{1d}$	approved	-0.0357
	¹³³ Cs APV	0	-376C _{1u} -422C _{1d}	-72.69 ± 0.48	-73.16
	²⁰⁵ TI APV	0	-572C _{1u} -658C _{1d}	-116.6±3.7	-116.8
Fit	e⁻-A	low	$C_{1u} + C_{1d}$	0.1358±0.0326	0.1528
All new			C_{1u} - C_{1d}	-0.4659 ± 0.0835	-0.5297
PVES			$C_{2u} + C_{2d}$	-0.2063 ± 0.5659	-0.0095
Data			C _{2u} -C _{2d}	-0.0762 ± 0.0437	-0.0621

J. Erler, M.J. Ramsey-Musolf, Prog. Part. Nucl. Phys. **54**, 351 (2005) R. Young, R. Carlini, A.W. Thomas, J. Roche, PRL 99, 122003 (2007) & priv. comm.

UNIVERSITY / VIRGINIA

Xiaochao Zheng, February 2009, Colloqium at UVa 65/64

Current Knowledge on C_{1,2q}

• Best: PDG2002 $\Delta(2C_{2u}-C_{2d}) = 0.24$

all are 1 σ limit

UNIVERSITY of VIRGINIA

Dilutions

 Dilution factor measures fraction of events from polarized nucleons (p in NH3 and D in ND3)

- With momentum corrections, expect to have sharper peak and higher f;
- Studying kinematic dependence of f with higher statistics.

- (integrated over
 φ* and cosθ*)
- > 0.20: overall``dilution factor"

Xiaochao Zheng, February 2009, Colloqium at UVa 68/64

Physics Motivation (cont.)

Example: Roper P₁₁(1440) -- Least understood and most controversial

- * Radial excitation of $3q: (1s)^2(2s)^1$ predicted by CQM;
- Favored by the Hybrid: 3qG with relativistic effect; PRC71, 015201 (2005) recent CLAS ana. PRC72, 058202(2005) • Sensitivity of Aet ($n\pi^+$) to P₁₁(1440):

Xiaochao Zheng, February 2009, Collogium at UVa 69/64

Physics Motivation (cont.)

Sensitivity of At ($n\pi^+$) to P₁₁(1440):

UNIVERSITY of VIRGINIA

Xiaochao Zheng, February 2009, Colloqium at UVa 70/64

Physics Motivation (cont.)

• Sensitivity of At ($p\pi^0$) to P₁₁(1440):

Spin observables may help to remove some model dependence in extraction of amplitudes -> better determination of the nature of $P_{11}(1440)$.

EG4 Kinematic Coverage

eg1b coverage: (for comparison)

Lowest Eb: 1.6 GeV

UNIVERSITY / VIRGINIA
EG4 Kinematic Coverage

Better ND3 polarization

UNIVERSITY of VIRGINIA

Electron Selection

EG4 had Cerenkov only in sector 6, use forward EC for e', will add Cerenkov cut in the final analysis

- Offline TOF calibration close to final (have not excluded non-working paddles yet)
- Used TOF cut $|t-t\pi| < 1$ ns

UNIVERSITY of VIRGINIA

p (GeV/c)

Pion Selection

 Offline TOF calibration close to final (have not excluded non-working paddles yet)

Missing neutron (proton) selection

NH3 target, ep -> e' π^+ n

Mmiss, e'pi⁺, hel gated

Cut used in analysis:
0.85<Mmiss<1.05 GeV

Missing neutron (proton) selection

NH3 target, ep -> e' π^+ n

UNIVERSITY / VIRGINIA

Xiaochao Zheng, February 2009, Colloqium at UVa 78/64

Dilutions

Dilution factor measures fraction of events from polarized nucleons (p in NH3 and D in ND3)

Figure from R. de Vita, Ph.D. thesis

MUNIVERSITY of VIRGINIA

Xiaochao Zheng, February 2009, Colloqium at UVa 79/64