Combining ferroelectricity and magnetism: the low energy electrodynamics

Diyar Talbayev Center for Integrated Nanotechnologies Los Alamos National Laboratory

Acknowledgements

Los Alamos National Laboratory

Toni Taylor A.V. Balatsky Darryl Smith Stuart Trugman John O'Hara

Boston University Rick Averitt

Rutgers University

Seongsu Lee S.-W. Cheong Osaka University, Japan

Tsuyoshi Kimura

Inha University, Korea

Namjung Hur

Nanyang Technological University, Singapore

Elbert Chia

<u>UCSD</u>

Andrew Laforge Dmitri Basov

Funding provided by the Los Alamos National Laboratory Directed Research and Development Program

Ferroic properties

FERROELECTRICITY

High-power current-driven write operation

FERROMAGNETISM

Low-power voltage-driven write

But...

Issues of fatigue need to be overcome

... enter MULTIFERROICITY!!!

Magnetoelectric multiferroics

MULTIFERROICS – materials with coexisting

magnetism and ferroelectricity.

Possible applications for magnetoelectric materials

Magnetoelectric memory Magnetically switched electro-optic device Electric-field-modulated visible Faraday rotator Magnetically (electrically)-modulated piezoelectric (piezomagnetic) devices, etc.

V. E. Wood, A. F. Austin, Int. J. Magnetism 5, 303-315 (1974)

Magnetoelectric effect

LOS AIAMOS NATIONAL LABORATORY

— EST.1943 -

NNSØ

Dynamic magnetoelectric effect

Mixing of magnetic and lattice vibrations – DYNAMIC MAGNETOELECTRIC EFFECT

Y.-H. Chu et al.,

Nat. Materials 7 478 (2008)

Magnetic and lattice motion interacts with light

— EST. 1943 -

Electromagnetic wave incident on the crystal

Phonons ~ oscillating electric dipole

→ Coupling to the electric field of the light wave

→ Resonance in the dielectric function, a.k.a. optical conductivity:

 $\varepsilon(\omega) \leftrightarrow \sigma(\omega)$

Magnetic and lattice motion interacts with light

Electromagnetic wave incident on the crystal

MATIONAL LABORATORY

Magnons ~ oscillating magnetic dipole

→ Coupling to the magnetic field of the light wave

→ Resonance in the magnetic susceptibility:

 $\chi(\omega) \leftrightarrow \mu(\omega)$

D. Talbayev et al., unpublished

Mix it up: electromagnons

TbMn₂O₅ : antiferromagnet and ferroelectric

Similar observations : multiferroics TbMnO₃, Eu_{0.75}Y_{0.25}MnO₃

Pimenov et al., Nature Phys. 2 97 (2006)

Valdes Aguilar et al., Phys. Rev. B 76 060404R (2007)

Pimenov et al., Phys. Rev. B 77 014438 (2008)

Electromagnons determine magnetoelectric functionality

TbMn₂O₅ : antiferromagnet and ferroelectric

(i) Electromagnon contributes to static dielectric constant:

$$\mathcal{E}_{1}(0) = 1 + 8 \int_{0}^{\infty} \frac{\sigma_{1}(\omega)}{\omega^{2}} d\omega$$

(ii) Electromagnon properties depend on the microscopic magnetoelectric coupling

• Los Alamos NATIONAL LABOR TORY EST. 1943 Properties of electromagnons

Dynamic magnetoelectric effect in hexagonal Ba_{0.6}Sr_{1.4}Zn₂Fe₁₂O₂₂

Layered magnetic structure

N. Momozawa and Y. Yamaguchi, J. Phys. Soc. Jpn. **62** 12992 (1993)

Several magnetic phases

T. Kimura, G. Lawes, and A.P. Ramirez, PRL **94** 137201 (2005)

Dynamic magnetoelectric effect in hexagonal Ba_{0.6}Sr_{1.4}Zn₂Fe₁₂O₂₂

Control of electric polarization by magnetic field:

T. Kimura, G. Lawes, and A.P. Ramirez, PRL 94 137201 (2005)

Time-domain studies of elementary excitations

Dynamics of photo-excited quasiparticles often exposes properties not detected by conventional probes – transport, magnetization, or optical conductivity

Time-domain detection of magnetic motion

Magneto-optical Kerr effect (MOKE) – rotation of polarization of light upon reflection by a magnetized medium

D. Talbayev et al, Phys. Rev. B 73 14417 (2006); Appl. Phys. Lett. 86 182501 (2005)

Time-resolved reflectance : coherent response

Magnetic or lattice?

N. Momozawa and Y. Yamaguchi, J. Phys. Soc. Jpn. **62** 12992 (1993)

Strong evidence in support of magnetic origin of the excitation – electron spin resonance, i.e., *k*=0 magnon

More evidence against the lattice

Identical oscillation frequency at different probe wavelengths

Calculation of magnon frequencies

T. Kimura, G. Lawes, and A.P. Ramirez, PRL 94 137201 (2005)

N. Momozawa and Y. Yamaguchi, J. Phys. Soc. Jpn. 62 12992 (1993)

Calculation of magnon frequencies

Dynamic magnetoelectric effect

Modulation of reflectance

$$R = \left| \frac{n-1}{n+1} \right|^2$$
$$n = \sqrt{\varepsilon}$$

Modulation of n and ε by magnon motion: dynamic magnetoelectric effect

Optical detection of magnetic state using reflection – implications for data storage and spintronics.

Magnetoelectricity in hexagonal HoMnO₃

Magnetoelectricity in hexagonal HoMnO₃

Magnetism of Ho³⁺ (S=2, L=6, J=8) ions:

Two sites: Ho(1) C_{3v}

Ho(2)
$$C_3$$
 – ordered for THo=5 K

Applied electric field induces magnetization of Ho ions:

$$H_{int} = \Sigma S^{Ho} A S^{Mn}$$

Far-infrared study of magnetic excitations

 $\begin{array}{c} c (001) \\ H \\ static field \\ (110) \\ H_{\perp} \\ \end{array}$

HoMnO₃

Far-infrared study of magnetic excitations

1 THz \rightarrow 300 μ m \rightarrow 0.004 eV \rightarrow 33cm⁻¹ \rightarrow 47 K

Magnetic excitations in HoMnO₃

→ Antiferromagnetic resonance (AFMR) of Mn ions

Neutron scattering: Vajk et al., Phys. Rev. Lett. 94 87601 (2005)

Crystal field splitting of Ho³⁺ ground state

Two Ho³⁺ (S=2, L=6, J=8) cites with C_3 and C_{3v} point symmetries

The electrostatic environment of Ho ions determines the crystal field splitting

Abragam and Bleaney, Electron paramagnetic resonance of transition ions, Clarendon press, 1970

Magnetic resonance of Mn ions

Classical treatment

$$F = \lambda \Sigma M_i \cdot M_j + K \sum (M_i^z)^2 - B \Sigma M_i^z$$

Interaction parameters measured by neutron scattering in zero field by Vajk et al., Phys. Rev. Lett. 94 87601 (2005)

Magnetic resonance of Mn ions

Magnetic resonance of Mn ions

 $\omega_{\pm}^{2} = \frac{ab}{2} - \frac{b(a-b)}{2(a+b)^{2}}B^{2} \pm \frac{bB}{2(a+b)^{2}}$ $\times \sqrt{B^{2}b(b-2a) + 2ab(a+b)^{2}}$ $a = 2H_{d}, \quad b = 3H_{ex}$ $H_{ex} = \lambda M_{0}$ $H_{d} = KM_{0}$

Palme et al., Solid State Comm. **76** 873 (1990)

Why the discrepancy?

Exchange coupling between Ho and Mn ions

YMnO₃: similar material – hexagonal lattice, ferroelectric, triangular antiferromagnet ... but Y ions are not magnetic ...and the calculation works!!

Penney et al., J. Appl. Phys. 40 1234 (1969) Sato et al., Phys. Rev. B 68 014432 (2003)

Discrepancy in HoMnO₃ is due to Ho-Mn (HM) exchange interaction:

$$H_{ex}^{HM} = \widetilde{J}_{ij} S_{iz}^{Ho} S_{jz}^{Mn} = J_z \frac{\chi B}{g_z \mu_B} S_z^{Mn}$$

$$F_{HM} = \frac{6J_z \chi}{g_z g \mu_B^2} B \sum M_{iz}^{Mn} = \lambda_{HM} B \sum M_{iz}^{Mn} \quad \left[\lambda_{HM} = -1 \right]$$

Effective magnetic field acting on Mn ions!

Magnetoelectricity in HoMnO₃

Ferromagnetic exchange between Ho and Mn:

$$H_{ex}^{HM} = \widetilde{J}_{ij}^{z} S_{iz}^{Ho} S_{jz}^{Mn} \qquad \widetilde{J}_{ij}^{z} < 0$$

Same interaction responsible for the magnetoelectricity:

Magnons allow the determination of microscopic details of magnetoelectric interaction.

In HoMnO₃, it is the Ho-Mn magnetic exchange coupling.

Summary

- (i) Magnetic and lattice excitations (magnons and phonons) play a fundamental role in the quest for understanding and exploiting magnetoelectric materials
- (ii) Detection of magnetic motion and magnetic state via the modulation of reflectance

(iii) Properties of magnons and phonons help reveal the microscopic details of magnetoelectric interaction

