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Steam engines in the 
early 1800s

-from an 1878 book by Thurston
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Carnot cycle
How efficient can a heat engine be? (“Reflections 

on the Motive Power of Fire”, 1824)

TH TC
QH QC

Engine

Work = QH −QC

dQ = TdS dS ≥ 0

Theoretical limit for efficiency: 1− TC

TH
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Classical Information Theory 
(from Boltzmann, 1877 to Shannon, 1948)

A sequence of 20 random bits:   00100111010010100111
A sequence of 20 1s:                 11111111111111111111

S = −
∑

x

p(x) log2(p(x))

In Appendix 2, the following result is established:

Theorem 2: The only H satisfying the three above assumptions is of the form:

H K
n

!
i 1

pi log pi

where K is a positive constant.

This theorem, and the assumptions required for its proof, are in no way necessary for the present theory.

It is given chiefly to lend a certain plausibility to some of our later definitions. The real justification of these

definitions, however, will reside in their implications.

Quantities of the formH ! pi log pi (the constant K merely amounts to a choice of a unit of measure)

play a central role in information theory as measures of information, choice and uncertainty. The form of H

will be recognized as that of entropy as defined in certain formulations of statistical mechanics8 where pi is

the probability of a system being in cell i of its phase space. H is then, for example, the H in Boltzmann’s

famous H theorem. We shall call H ! pi log pi the entropy of the set of probabilities p1 pn. If x is a

chance variable we will write H x for its entropy; thus x is not an argument of a function but a label for a

number, to differentiate it from H y say, the entropy of the chance variable y.

The entropy in the case of two possibilities with probabilities p and q 1 p, namely

H p log p q logq

is plotted in Fig. 7 as a function of p.

H
BITS

p

Fig. 7—Entropy in the case of two possibilities with probabilities p and 1 p .

The quantity H has a number of interesting properties which further substantiate it as a reasonable

measure of choice or information.

1. H 0 if and only if all the pi but one are zero, this one having the value unity. Thus only when we

are certain of the outcome doesH vanish. Otherwise H is positive.

2. For a given n, H is a maximum and equal to logn when all the pi are equal (i.e.,
1
n
). This is also

intuitively the most uncertain situation.

8See, for example, R. C. Tolman, Principles of Statistical Mechanics, Oxford, Clarendon, 1938.

11

A low entropy source can be 
compressed:  .gz, .zip, ...
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Communicating over a noisy channel:

Alice Bob

input X output Y

Channel defined by allowed inputs and outputs 
and by probability P(Y|X)
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Communicating over a noisy channel 
(examples):

0 0

1 1

p

p

1-p
1-p

Binary symmetric channel:

0 0

1 1

p

p

1-p
1-p

Binary erasure channel:

E
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Meaning of entropy (Shannon’s noisy 
channel coding theorem):

Error correction:

10....1 Encode 11.....1 Channel

Decode

01.....1

01.....1 10....1

k bits N>k bits
N bits (with 

errors)

k bits

A simple code (repetition code):

1 11.....1 Channel Pick majority

For p>1/2, error probability exponentially small in N, 
but we encode at rate k/N=1/N, so rate->0
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Communicating over a noisy channel:
the capacity

Choose inputs with probability
Output: 

p(X)

The capacity:

p(Y ) =
∑

X

P (Y |X)p(X)

conditional information

How much noise is output, minus how much noise is 
due to the channel, equals the information transmitted.

S(B) = −
∑

Y

p(Y ) log2(p(Y ))

S(B|A) = −
∑

X

p(X)
[∑

Y

P (Y |X) log2(P (Y |X))
]

maxp(X)S(B)− S(B|A)
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Meaning of entropy (Shannon’s noisy 
channel coding theorem):

Shannon ‘48

We can encode k bits into N bits, such 
that the error probability goes to zero as 
N goes to infinity, with k/N asymptotically 
approaching C, the capacity of the channel.

This gives a meaning to the capacity of the channel.
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• C is not zero!

• C is actually quite large.  C for the erasure 
channel is equal to p.

• We can calculate C.

• We do the calculation by a single-letter 
formula, despite using correlations to 
correct errors.

Amazing things about channel coding:

Additivity of capacities.
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Communicating over a noisy quantum 
channel:

Channel is a linear map on density matrices.

Alice Bob

input outputρ E(ρ)

E(ρ) =
D∑

s=1

A(s)ρA†(s)
D∑

s=1

A†(s)A(s) = I
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Communicating over a noisy quantum 
channel:

Signal words: input state        with probabilityρi pi

χ(E , {pi, ρi}) = H
(
E(

∑

i

piρi)
)
−

∑

i

piH
(
E(ρi)

)

H(ρ) = −tr
(
ρ log2(ρ)

)
Quantum entropy:

recall S(B) recall S(B|A)

Holevo capacity for sending classical 
information over a quantum channel:

χmax(E) = max{pi,ρi}χ(E , {pi, ρi})
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“I wish that physicists would 
... give us a general expression for the 
capacity of a channel with quantum 

effects taken into account rather than a 
number of special cases.” 

-J. R. Pierce, 1973, in a retrospective 
on Shannon’s paper.
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Communicating over a noisy quantum 
channel:

Why the Holevo capacity is hard to 
evaluate: should we entangle?

Additive: χmax(E1 ⊗ E2) = χmax(E1) + χmax(E2)

Non-
Additive:

χmax(E1 ⊗ E2) > χmax(E1) + χmax(E2)

The additivity conjecture: the first case is true 
for all quantum channels.

χmax(E⊗n) ?= nχmax(E)
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• Additivity of Holevo capacity

• Additivity of minimum output entropy

• Additivity of entanglement of formation

• Strong super-additivity of entanglement of 
formation

Equivalence of additivity conjectures (Shor, 2004):
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Why Additivity Is 
Important:

• We can boost capacity using entangled 
inputs.

• If additivity fails, then we physicists have not 
answered Pierce’s question.  It is not 
practical to compute the capacity 
maximizing over arbitrary entangled inputs.

• Additivity in the classical case gives meaning 
to the capacity of a channel.
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“On the other hand, there are the big challenges, 
like the additivity problems .....  Probably every 

quantum information theorist worth his salt has 
had a go on that one.  Such challenges are 

landmarks in any field.  If you can make serious 
progress on one of them, you know you have 

really moved.” 

-R. F.  Werner, in a 2005 review of open problems in 
quantum information theory
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The minimum output entropy conjecture:

Hmin(E) = min|ψ〉H(E(|ψ〉〈ψ|))

Hmin(E1 ⊗ E2)
?= Hmin(E1) + Hmin(E2)

Relation to additivity of Holevo capacity: by reducing the 
output entropy for a given input state, we can 

communicate more effectively over the channel.
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A Counterexample to 
Additivity! MBH ‘08

E(ρ) =
D∑

i=1

piU
†
i ρUi

E(ρ) =
D∑

i=1

piU
†
iρU i

Two random 
channels, related 

by complex 
conjugation:

are randomly chosen unitaries.Ui

1 << D << N

This channel models interaction with a random 
environment.
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E

E
⊗

E

E

a)

b)

E(|ψ〉〈ψ|)|ψ〉

|ψ〉

E(|ψ〉〈ψ|)|ψ〉

E ⊗ E(|ψ〉〈ψ|)
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There is a low entropy input 
state for the combined channel: 

Why additivity fails:

|φ〉 =
1√
N

N∑

α=1

|α〉 ⊗ |α〉

Note that:

So, of the D^2 possible outputs, D of them are the same, 
when we choose the same unitary for both channels.

H(E ⊗ E(φ)) =
1
D

log2(D) + (1− 1/D) log2(D
2)

= 2 log2(D)− log2(D)/D

However, for most such channels,
Hmin(E) ≥ log2(D)− const./D −O(

√
ln(N)/N)

(proof based on randomness)

U†
i ⊗ U

†
i |φ〉 = |φ〉
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Experimental relevance:
• Currently, it is too difficult to manipulate 

entangled states to expect any practical 
boost in capacity for any channel.

• However, we may be able to check that 
certain entangled states decohere less than 
unentangled states.

• Check simpler claim: that entangled state is 
more likely to remain unchanged after 
interacting with environment.

• Need to create large number of entangled 
pairs (N>>1), and interact in a non-linear 
way with environment.
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The future of additivity?

• Pierce’s channel capacity problem remains 
open.

• I conjecture additivity for channels of the 
form                     , giving a two-letter 
formula to solve the capacity problem.

• Can we use these ideas to protect states 
from decoherence?

E = F ⊗ F
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Pure states can look locally mixed:

Ψ = | ↑〉| ↓〉 − | ↓〉| ↑〉
Singlet state:

Reduced density matrix:

ρ1 =
1
2

(
| ↑〉〈↑ | + | ↓〉〈↓ |

)

Each spin looks completely random on its own!
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Pure states can look locally mixed (general 
bipartite system):

A
B

Break space into two 
regions, A and B

ρA = TrB(ρ)Reduced density matrix:

For a pure state we can quantify 
entanglement by the entropy: H(ρA) = H(ρB)
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Pure states can look locally mixed:

|Ψ0〉 =
∑

γ

A0(γ)|ΨA(γ)〉 ⊗ |ΨB(γ)〉

H = −
∑

γ

|A(γ)|2 log2(|A(γ)|2)

A
B

Singlet has one qubit of entropy.
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Relation between entanglement 
entropy and simulation:

States with low entropy can be 
simulated efficiently using matrix 
product states (DMRG by White, 

TEBD by Vidal, etc...)

Cost is exponential in entropy.

Most systems in ground state obey “area law”, 
entropy proportional to area, easier to simulate.

F. Verstraete and J. I. Cirac, 
PRB 73, 094423 (2006).

MBH, JSTAT, 2007
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Thermalization:

1. Start with a system in its ground state

2. Make a sudden change in the Hamiltonian

3. Let it evolve without interacting with the environment.

Evolution is unitary, so how does it thermalize?
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• Prepare atoms in periodic optical lattice 

• Add period-2 potential to set up initial alternating particle/
hole/particle/hole/... configuration

• Return to a symmetric potential and let it evolve

• Measure occupation of even and odd sites (order parameter)

I. Bloch’s group has 
shown it is possible to 

produce these 
superlattices (Nature ‘07)

Proposed experiment (Cramer, Flesch, McCulloch, Schollwock, Eisert, Bloch)

X X X X X X X X
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Thermalization:

Evolution is unitary, so how does it thermalize?

Resolution of the puzzle: if the system is big, each 
small portion of the system becomes entangled 

with the rest.  This means that the reduced density 
matrix on part of the system can have non-zero 

entropy.  However, if it is thermal then the entropy 
is proportional to the volume, not the area.

H ≤ const.×At

H ∼ V

tthermal ≥ V/A

Bravyi, MBH, Verstraete, PRL 06, 
Eisert, Osborne PRL 06
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After global change of Hamiltonian, the system is in a 
very excited state of the new Hamiltonian.  There are 

quasi-particle excitations everywhere, which carry 
entropy across the cut.

X

T

Worst case: entropy grows linearly in time.
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Difficult to simulate far 
from equilibrium:

Entropy scales linearly in time, so matrix product 
methods require exponentially growing effort in time.

Brute force simulation of a system of size N 
requires effort scaling exponentially in N.

Another approach: light-cone (MBH ‘08), still 
exponential in time, but a lower exponential.
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Light-cone methods 

X

T

We don’t need to simulate 
anything outside the light-cone!

Early time dynamics is easier because less entangled.  
Result: double the time that can be simulated!

MBH, Phys. Rev. B 08
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Light cone method is 10^3 times faster, 10^6 
times less memory used for this problem size.

Doubling the time that can be 
simulated would otherwise require 
huge increase in resources, due to 
exponential increase in complexity 

of problem.
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H =
∑

i

Sx
i Sx

i+1 + Sy
i Sy

i+1 + ∆Sz
i Sz

i+1

Quench from infinite Delta to finite Delta

0 5 10 15 20

Time

-0.4

-0.2

0

0.2

0.4

<
S

z >
 f

o
r 

ce
n
tr

al
 s

p
in

Exact solution
l=18
l=20
Brute force, N=20

Delta=0, free fermions
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Time
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brute force, N=20

l=18
l=20
l=22

Delta=0.5, interacting

H =
∑

i

Sx
i Sx

i+1 + Sy
i Sy

i+1 + ∆Sz
i Sz

i+1
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Delta=0.5, interacting

H =
∑

i

Sx
i Sx

i+1 + Sy
i Sy

i+1 + ∆Sz
i Sz

i+1

10 15 20 25
Time

-0.02

-0.01

0

0.01

0.02

M
ag

ne
tiz

at
io

n

Light-cone, l=10, start-time=15.0625
Light-cone, l=10, start time=16.0625
iTEBD
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Predictions from Light-
Cone Methods:

• Decaying oscillations in order parameter 
with power-law envelope when no 
interaction: 

• Faster decay with interaction.  Possible 
revivals at long time (MBH and L. S. Levitov, 
08)

• At very strong interaction, oscillations 
disappear replaced by kinks

cos(2t)/
√

t

The experiment will probe highly entangled states.
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Conclusion

• 1824: Carnot efficiency bound.  1890: Rudolf Diesel 
develops engine, inspired by trying to approach this bound.

• 1948: Shannon’s paper.  1993: turbo codes approach 
Shannon limit.  LDPC codes similarly good.

• First topologically protected qubit?  Willett et al., 2009.  
What will come next?

Entangled states improve communication capacity

Thermalization can arise from quantum entanglement

Novel algorithms and predictions

A little history:
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