

The Race for the Higgs Boson

Setting the Scale for Particle Physics

Particle physics is the study of the most basic building blocks of matter and their interactions

Why high energy?

- Small distances and high energies: $\lambda = h/p$
- Optical resolution proportional to λ
- So, we need high energy/momentum to probe the fundamental building blocks of nature

Evolution of the Universe

With TeV collisions we probe the universe When it was only 10⁻¹⁰ s old!

Are there undiscovered fundamental particles?

Make up all "regular" matter In the Universe

Force Carriers

Unstable matter created in high-energy collisions

Standard Model (SM) of particle physics includes these experimentally observed particles and their interactions

What is the origin of Electroweak Symmetry Breaking?

- Consider the Electromagnetic and the Weak Forces
- Coupling at low energy: EM: ~[X], Weak: ~[X]/(M_{W,Z})
 - Coupling strength governed by the same dimensionless constant
 - Difference due to the mass of the W and Z bosons
 - Electroweak symmetry: $M_{\Upsilon} = M_{Z} = M_{W}$
 - But photons massless and W and Z are massive?
- SM postulates a mechanism of electroweak symmetry breaking via the Higgs mechanism
 - Results in massive vector bosons and mass terms for the fermions

2010 Sakurai Prize

... for "elucidation of the properties of spontaneous symmetry breaking in four-dimensional relativistic gauge theory and of the mechanism for the consistent generation of vector boson masses."

So in honor of their work ...

Brout-Englert-Higgs-Hagen-Guralnik-Kibble

(BEHHGK) mechanism

[Pronounced "heck" mechanism: preserves author grouping publication ordering,

I will use "Higgs" and "BEHHGK" boson interchangeably in this talk, but will refer to the H particle

Means BEHHGK field exists

☐ Means we confirm our theory for the origin of mass

his non-

 $V(\phi)$

Higgs Analogy

 The BEHLGK field permeates the universe and the strength with which a particle interacts with it determines the observed mass of the particle

Mass = Popularity

Are there undiscovered fundamental particles?

The stand

this!

MISSING PARTICLE:

Name: Higgs boson

Age: 13.7 billion years

Missing: 45 years

Birthday: Every few days at

Fermilab

Favorite trait: Mass

Favorite particle: top quark

Favorite Hangout: Tevatron

Discovery on the que

shine light breaking

Constraints the Standard Model Higgs Boson

Higgs searches ongoing for 30 years!

- Direct searches from LEP:
 - Higgs mass > 114 GeV

Many Electroweak observables are sensitive to the

If the Higgs exists in this mass range, we can produce it with high energy particle collisions

- Indirect EWK constraints:
 - Higgs mass < 157 GeV

Particle Accelerators

High energies are needed to:

- → probe small distances
- produce heavy particles

Image:

- → 1932, Cockroft-Walton accelerator
- → First nuclear reaction instigated by artificially accelerated particles

Accelerators have come a long way...

The Tevatron at Fermilab

The Tevatron currently provides the highest energy proton-antiproton collisions in the world:

The LHC at CERN

The Race Tracks: Tevatron v/s LHC

	The Tevatron	The LHC
Circumference	6.3 km	26.7 km
Beams	Proton-antiproton	Proton-proton
Collision Energy	1.96 TeV	7 (10) [14] TeV
Status	Taking Data since 2002 > 400 publications	First 7 TeV beam expected within the next few months

Rates of Physics Processes at the Tevatron

Higgs Production and Decay

Main Search Channels

I will focus on low-mass and use the $WH \rightarrow lvbb$ analysis from CDF as an example

Higgs Production Rates

About 1000 Higgs events expected at the Tevatron in the with dataset (10 fb^-1)

Particle Identification

So, for $WH \rightarrow lvbb$ we need to identify event with a lepton, neutrino, and two b jets.

General purpose particle physics detectors

Tracking (large B field):

- Si chamber
 - Very good spatial resolution (b tags)
- Wire chambers

Sampling Calorimeters:

- ■FM Cal
- Hadronic Cal

Muon Chambers:

- Drift Chambers
- Scintillators

The CDF Experiment at FNAL

Collaboration

15 Countries63 Institutions602 Authors~50 pubs/year

The CMS Experiment at the LHC

The Racers

Detectors to Scale

diameter = 25 m length = 46 m

d = 12 m l = 12 m

CDF

Cockroft-Walton

(Accelerator and Detector!)

Higgs Searches at the Tevatron

Triggers

- •Collisions occur at a rate of ~ 2.5 MHz!
 - → More than 99.9% jet events
 - → We can't (and don't want to) store all events
- •We select (trigger) potentially useful events and throw the rest away!
- •There are many different triggers to choose from:

We can trigger on the lepton ($e \text{ or } \mu$):

• WH $\rightarrow \ell \nu bb$, ZH $\rightarrow \ell \ell bb$, H \rightarrow WW

Or, MET + jets (MET= missing transverse energy):

•WH $\rightarrow \ell \nu bb$, ZH $\rightarrow \nu \nu bb$

Event Selection

Based on the final state content, event selection is optimized to maximize signal acceptance and sample purity

Backgrounds to the Higgs Boson Signal

Backgrounds are events from other processes that pass Higgs event selection.

Examples from WH \rightarrow lvbb

Signal

Ins**Physies** tal Background

Other backgrounds from top, dibosons, ...

WH Background Estimate

Top/EWK (WW/WZ/Z→ττ, ttbar)

- MC normalized to theoretical cross-section
- Modeled by Pythia Monte Carlo

Non-W (QCD)

- •Multijet events with semileptonic *b*-decays or mismeasured jets
- Fit low MET data and extrapolate into signal region
- Modeled by 'Anti/Jet-electons'

W+HF jets (Wbb/Wcc/Wc)

- •W+jets normalization from data and heavy flavor (HF) fractions from ALPGEN Monte Carlo
- Modeled by Alpgen W+HF MC

MC+ data driven

MC driven

Wbb

Wcc

- Falsely tagged light quark or gluon jets
- Mistag probability parameterization obtained from inclusive jet data
- Apply mistag probability to generic W +jets sample

Background Estimate

Multivariate Techniques

Variable Selection

Other Variables

- M_{jj} is the most sensitive, but other variables can add separation power between signal and background
- Example: the matrix element method uses the final state 4-vectors reconstructed in each event to calculate the theoretical event probability
 - → Highly correlated with dijet mass
- For NN or BDT we carefully choose variables that have separation power for at least 1 background
- Using multivariate techniques improves sensitivity by ~25% for WH over just using M_{ii}

Check Background Modeling

Select triggers

33

Multivariate techniques are only as good as

the modeling of the input variables...

A Plethora of Cross Checks!

Most searches perform a "blind" analysis:

- The method is fixed before looking at multivariate discriminate in the signal region
- The background modeling is checked in control regions defined to isolate different backgrounds:
 - before b-tag (W+jets)
 - 4-jet (tt)
- Many additional "blind" checks performed
 - Correlations of input/output are well modeled
 - Many "slices" of phase space checked
- Systematic uncertainties cover modeling concerns...

Fit For Signal (we wish!)

We don't see evidence for the Higgs boson yet!

- For now, we set limits on its rate of production
- These limits say:

If the true Higgs production rate was at the limit value, we would see evidence of the Higgs signal more significant than what we observed in 95 % of experiments

We only get one real experiment!

- To study our sensitivity we make test experiments (called pseudo-experiments).
- These take statistical fluctuations and systematic uncertainties into account
- We often quote these limits in factors away from the standard model prediction

Fit For Signal (we wish!)

WH Limit Result

WH Proofs of Principle

Single Top Quark Production

Measuring single top quark production is a benchmark for WH!

CDF first observation of single top: Phys. Rev. Lett. 103, 092002 (2009)

WH 1/10 Singletop

Single Top Celebration

WH Proofs of Principle

Diboson Production (lvjj) Measuring diboson production is a benchmark for WH!

- •lvjj final state also very similar to Higgs
- Small signal in large background
- Use same background method and analysis tools
- Dijet mass most sensitive variable
- →also in low-mass Higgs searches!

WH Proofs of Principle

CDF first observation diboson (lvjj): arXiv:0911.4449 (accepted by PRL)

CDF Results: All Channels

CDF limits at low mass $(M_H = 115 \text{ GeV/c}^2)$

Channel	Limit x SM (expected)
WH → lvbb	3.8
$ZH \rightarrow vvbb$	4.2
ZH o IIbb	5.8
$H \rightarrow WW \rightarrow I \nu I \nu$	8.5 (@ 120 GeV)
ZH+WH → jjbb	19.9
$H \rightarrow \tau \tau$	26.1
$H \rightarrow \Upsilon\Upsilon$ (New!)	19.5 (@ 120 GeV)

CDF Results: All Channels

CDF limits at low mass $(M_H = 115 \text{ GeV/c}^2)$

Channel	Limit x SM (expected)
WH → lvbb	3.8
$ZH \rightarrow vvbb$	4.2
ZH o IIbb	5.8
$H \rightarrow WW \rightarrow I \nu I \nu$	8.5 (@ 120 GeV)
ZH+WH → jjbb	19.9
$H \rightarrow \tau \tau$	26.1
$H \rightarrow \Upsilon\Upsilon$ (New!)	19.5 (@ 120 GeV)
CDF combined	2.4

Latest Tevatron Combined Results

All channels combined from the CDF and D0 experiments

Within a factor of 2 of exclusion sensitivity to SM over the full interesting mass range!

Higgs Search Progress

Orange band = 1.5 expected improvement factor

Improvement Example

Filling "gaps" in muon trigger coverage

Improvement Example

Filling "gaps" in muon trigger coverage

Also filled in gaps using triggers based on missing E_{τ} +jets triggers:

- •MET+jet triggers in for full dataset
- Can fill in all "types" of muons
- •Muons are minimum ionizing and contribute to MET in trigger
 - → Improves efficiency
- •Large increase in muon acceptance for WH!

Equivalent to having 20% more luminosity

Higgs Outlook

Higgs Outlook

Tevatron Higgs Summary

- Datasets shown here should at least double
- Tevatron will have sensitivity to a low-mass Higgs boson!
 - -> Should be able to exclude at 95% confidence level over the entire mass range with 8-10 fb⁻¹

Or, we might just see something!

Higgs Searches at the LHC

Peter Higgs in the LHC tunnel (First observation of Higgs at the LHC!)

Higgs Searches at the LHC

- LHC very sensitive to high mass Higgs boson
 - Tevatron already excluding their "sweet spot"
- Low mass searches are also very challenging at LHC!
- LHC uses different production/decay channels:
 - $-ttH \rightarrow ttbb$
 - $-gg \rightarrow H \rightarrow \gamma\gamma$
 - → Complimentary to Tevatron searches!
- Once observed, we need to measure as many of its production and decay modes as possible
- Tevatron data may be able to confirm or deny early evidence at LHC

Example: Atlas Sensitivity at 14 TeV

Example: 10 TeV v/s 14 TeV

The LHC Plan

- First collision data last year at about Tevatron energies
- First 7 TeV collisions in the next few months
 - → New energy frontier!
- Run for about 2 years at 7 TeV
 - \rightarrow Goal to accumulate about ~1 fb⁻¹ of "good" data
- •Followed with shutdown for ≥ 1 year to prepare the magnets for 14 TeV

Once the LHC accelerator is working well, luminosity will come quickly (Don't have to make anti-protons!)

The race is on!

The Tevatron has begun to exclude the High mass region

→ This is the "sweet spot" for the LHC

Low mass is hard at the Tevatron and the LHC

→ Tevatron has a head start

Once LHC working well, data and sensitivity to the Higgs will come fast!

→ The Tevatron is still running steady

Tevatron

LHC

Acknowledgements

The WH Team:

Conveners: Craig Group and Weiming Yao

Students: B. Alvarez, A. Buzatu, B. Casal, P. Dong, M.

Frank, J. Slaunwhite, T. Masubuchi, Y. Nagai, J. Kueng, T.

Aaltonen, B. Wu, E. Pianori, F. Sforza

Post Docs: C. Group, N. Krumnac, H. Wolfe, E. Palencia, J. Vizan

Profs: F. Canelli, J. Cuevas, J. Dittmann, E. Eusebi, R. Hughes, K. Lannon, S. Kim, A. Ruiz, R. Wallny, B. Stelzer, C. Neu, T. Muller, R. Snihur, E. Thomson, A. Taffard, R. Vilar, A. Canepa, N. Lockyer, G. Chiarelli, B. Winer, W. Wagner, J. Wagner-kuhr, A. Warburton, Weiming Yao

Identifying b jets

