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Part-2



First Observation of Shock Waves
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Absorption images: Collision of atomic clouds

John Thomas group (Duke)
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Nonlinearity Dissipation
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Dispersion



Shock Waves
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Dissipative or dispersive  shock waves



Cold-Fermi  Experiments (Duke)

Courtesy : J. Joseph et al, PRL 98, 170401 (2007)

Courtesy : Regal and Jin,

PRL 90, 230404 (2003)

No Shock waves 



Dispersive Shock Waves by Merging and Splitting 

Bose-Einstein Condensates

9Chang et al, PRL 101, 170404 (2008)



John Thomas Experiment   & Theory

10Dip splitting picture
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Fermions at Unitarity

No scale except 
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Duke Geometry and Numbers
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Integrated 1D Density versus position (Theory & Experiment)
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Initial Density Profile with Repulsive Knife 

Dimensionally Reduced Hydrodynamics
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Density Evolution Velocity Evolution
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John Thomas Experiment   & Theory
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Conclusions for Part 1

• First observation of shock waves in Unitary Fermi gas. 

•Hydrodynamics of unitary gas gives a good description of collision of 

atomic clouds even deep in nonlinear regime.

• Near perfect quantitative agreement with experiment without any fitting 

parameter except the phenomenologically introduced viscosity term. 

• Additional experiments necessary to clarify the nature of shock waves.

• Effects of moving away from unitarity and finite temperature effects 

remain an open question. 

• The experiments on strongly interacting Fermi gases form an ideal 

playground for studying out of equilibrium nonlinear hydrodynamics 

beyond the Luttinger liquid paradigm. 
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Harmonically trapped integrable model of cold atoms

SU(2) Spin Calogero Model in Harmonic trap:
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Important limits of the model are:

a) Free Fermions with spin

b) Splinless Calogero model

c) Haldane-Shastry spin chain (similar to Heisenberg chain)



Phase Space Picture
The boundaries give the 

equations for k’s

26



Static Configuration:

• Two circles with different radii

• Radii depends on coupling and number

of spin up & spin down particles.
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Equilibrium (static) charge density profile: 
Free Fermions with spin

29
(M. K. , A. G. Abanov, Nucl. Phys.B, 846, 122 (2011))

Striking similarity with Ma and Yang for 

fermions with contact  interactions



10 % are spin-downContact Interactions:
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Courtesy : Ma and Yang (private communication, (CPL, 27, 080501 (2010))

(similar behaviour with spin profile)



Dynamics Configuration

Parameter

Remarkably simple and exactly like

free fermions
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Exact parametric solutions:

Initial profile
(M. K. , A. G. Abanov, Nucl. Phys.B, 846, 122 (2011))



Cooling with additional potential – “knife” in place
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(M. K. , A. G. Abanov, Nucl. Phys.B, 846, 122 (2011))



Dynamics
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This “peak” to “box” transition has been observed in Duke for quasi-1D unitary Fermi gas 



Dynamics of a polarized center: FFDynamics of a polarized center: FF

� Spin drags charge

� Profiles exhibit steepening
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M. K. , F. Franchini, A. G. Abanov (PRB 2009)



Dynamics of a polarized center: Dynamics of a polarized center: sCMsCM

�� Qualitatively similar behaviors for rescaled quantities (Qualitatively similar behaviors for rescaled quantities (tt = (= (λλ+1/2)+1/2)tt ))

�� C                  freezing of charge           HaldaneC                  freezing of charge           Haldane--ShastryShastry Model  Model  

((PolychronakosPolychronakos, PRL, 1993), PRL, 1993)

M. K. , F. Franchini, A. G. Abanov (PRB 2009)Field Theory Perspective
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Spin Chains and spin dynamics

37
Courtesy : D. Weld et al, PRL 103, 245301 (2009)

(Heisenberg-like interaction)

Domain wall dynamics for the 

Haldane-Shastry model which is 

similar to XXX Heisenberg chain.



Solitons on a curved background

•Conventional definition of a soliton as “a pulse that maintains its shape  while it  

travels at a constant speed” doesnot make sense on a curved background

•Soliton is a finite dimensional reduction of  N-dimensional  model and its  infinite 

dimensional field theory limit

38A. G. Abanov, A. Gromov, M. Kulkarni (in preparation)



Conclusions for Part 2

• Nonlinear Collective Field Theory starting from a microscopic model to 
capture collective physics in the hydrodynamic limit

• Static and dynamic features of fermions with inverse square range  
interactions in trap

• Steepening of profiles

• Spin drags charge

• n-point correlators (Emptiness Formation Probability) as an instanton
approach to  field theory 

• Soliton solutions of spinless Calogero in harmonic trap as finite 
dimensional reductions 


