Topological Phases in One Dimension

Lukasz Fidkowski and Alexei Kitaev
arXiv:1008.4138

Topological phases in 2 dimensions:

- Integer quantum Hall effect
- quantized $\sigma_{x y}$
- robust chiral edge modes
- Fractional quantum Hall effect

- fractionally charged quasi-particles
- robust chiral edge modes
- Quantum spin Hall, topological insulators, etc.
- free electrons, spin-orbit coupling

The Majorana Wire

- spin-less p-wave superconductor
- tight-binding model:

$$
\begin{array}{cccccc}
\mathbf{j}=\begin{array}{cccc}
\circ & 0 & 0 & 0 \\
\mathbf{I} & \mathbf{2} & \mathbf{3} & \mathbf{4} \\
H=\sum_{j}\left(\mu a_{j}^{\dagger} a_{j}+t\left(a_{j} a_{j+1}^{\dagger}+a_{j+1} a_{j}^{\dagger}\right)+\Delta\left(a_{j} a_{j+1}+a_{j}^{\dagger} a_{j+1}^{\dagger}\right)\right) \\
\text { chemical } \\
\text { potential }
\end{array} & \begin{array}{l}
\text { hopping }
\end{array}
\end{array}
$$

Gapped Hamiltonians:

phase transition

Re-write in terms of Majorana modes:

$$
\begin{gathered}
\left\langle a_{j}, a_{j}^{\dagger}\right\rangle \longrightarrow\left\langle c_{2 j-1}, c_{2 j}\right\rangle \\
c_{2 j-1}=-i\left(a_{j}+a_{j}^{\dagger}\right) \\
c_{2 j}=a_{j}+a_{j}^{\dagger}
\end{gathered}
$$

$\left\{a_{1}, \ldots, a_{N}, a_{1}^{\dagger}, \ldots, a_{N}^{\dagger}\right\} \longrightarrow\left\{c_{1}, \ldots, c_{2 N}\right\}$

N fermion creation / annihilation operators

2N Hermitian Majorana operators

- our Hamiltonian can then be written as a quadratic form in the Majoranas:

$$
H=\sum_{m, n=1}^{2 N} A_{m n} c_{m} c_{n}
$$

- graphical representation: Hilbert Space:

$$
\begin{aligned}
& j=\stackrel{0}{i} \\
& 2 \\
& 3
\end{aligned}
$$

Hamiltonian:

\circ	\circ	\circ	\circ	$\circ-$	\circ
c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}

$$
=\frac{i}{2}\left(c_{1} c_{2}+c_{3} c_{4}+c_{5} c_{6}\right)
$$

$=a_{1}^{\dagger} a_{1}+a_{2}^{\dagger} a_{2}+a_{3}^{\dagger} a_{3} \longleftarrow$ decoupled
trivial phase:

topological phase:

$$
\begin{aligned}
a & =\frac{1}{2}\left(c_{1}+i c_{6}\right) \quad \longrightarrow \quad \text { double ground state degeneracy } \\
a^{\dagger} & =\frac{1}{2}\left(c_{1}-i c_{6}\right)
\end{aligned}
$$

Recap:

Itinerant spin-less fermions in one dimension have two phases. The non-trivial "topological" one is characterized by having Majorana edge modes at its endpoints.

What is left:
I) interactions?
2) symmetries?
either generic (like time reversal or particle-hole) or some arbitrary symmetry group G (like $\operatorname{SU}(2)$ in spin chains)

Majorana chain with time reversal symmetry

- spin-less fermions as before, with

$$
T: \begin{aligned}
& a_{j} \rightarrow a_{j} \\
& a_{j}^{\dagger} \rightarrow a_{j}^{\dagger}
\end{aligned} \quad \longleftrightarrow \quad T: c_{k} \rightarrow(-1)^{k} c_{k}
$$

- non-interacting (i.e. quadratic fermion) analysis gives infinitely many phases, characterized by an integer $n \in \mathbb{Z}$

we showed that with interactions, \mathbb{Z} is broken down to \mathbb{Z}_{8}

$$
n \rightarrow n \quad \bmod 8
$$

showed this by turning on quartic interactions and finding an explicit path in interacting Hamiltonian space which connects n and $n+8$.

But how to handle interactions in general?

Matrix Product States:

- Bosonic spin chains with local local spins s

$$
\begin{aligned}
& \Psi\left(s_{1}, \ldots, s_{N}\right)=\operatorname{Tr}\left(A_{s_{1}} \ldots A_{s_{N}}\right) \\
& s_{i} \in\{-s / 2,-s / 2+1, \ldots, s / 2\} \\
& A_{s_{i}}: D \times D \text { matrices }
\end{aligned}
$$

(can be generalized to fermionic systems via Jordan-Wigner transform)

- Ground states of gapped Hamiltonians can be approximated arbitrarily well by MPS with small D
(Hastings 2006)

Tensor network contraction picture:

Closed MPS:

Open MPS:

Virtual degrees of freedom <=> edge modes
Theorem: If G is a symmetry of the original states, then G has a projective action on the virtual degrees of freedom.
(projective means that group relations are obeyed only up to phases, which one might not be able to gauge away)

Thus, if G is a symmetry of the Hamiltonian, then there is a projective action of G on the edge modes.

Generally, there is a discrete set of classes of projective representations of G , and these classes correspond to different phases. In fact, they enumerate all gapped phases of Hamiltonians with that symmetry group.

Example: AKLT Hamiltonian for spin-I Heisenberg model
$\mathrm{G}=\mathrm{SO}(3)$, but edge states in the non-trivial (Haldane) phase are half-integer spins. These are representations of $\mathrm{SU}(2)$, and only projective representations of $\mathrm{SO}(3)$.

Example: Majorana chain with time reversal symmetry
$\mathrm{G}=<\mathrm{I}, \mathrm{T}, \mathrm{P}, \mathrm{PT}>$ where $\mathrm{P}=(-\mathrm{I})^{\wedge} \mathrm{F}$
If $n \bmod 8$ is the previously discussed topological index then:

- $\mathrm{n} \bmod 2$: P bosonic vs. fermionic
- $n \bmod$ 4: T commuting/anti-commuting with P
$-n \bmod 8: T^{\wedge} 2=+I$ or $T^{\wedge} 2=-1$

