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Introduction and motivation

Device miniaturization is approaching atomic 
scales...
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Device miniaturization is approaching atomic 
scales...
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A. Nitzan and M. A. Ratner, 
Science 300, 1384 (2003).

Electrical current passing through molecular structures



  

Introduction and motivation

At molecular length scales quantum mechanics is 
important. A simple theoretical description of such 
structures is based on the tight-binding model.

Any electrical circuit made with molecular building 
blocks must involve junctions of three or more 
wires.

 

V; tV 0; t0

Some structure and interactions

Interaction strength and hopping amplitude



  

Introduction and motivation

Question: How does a junction conduct 
electricity?

Ii = f(V1; V2 : : : Vn)

Linear response regime: Ii =
X

j

GijVj

i = 1

i = 2

i = 3

i = 4

V1
I1



  

Introduction and motivation

Universality

Many different junctions, i.e. with different structure and interactions,

can have the same linear conductance.

Challenge: given an arbitrary junction with some structure 
and interactions, determine the universal conductance of 
the junction?

Difficult because 1) conductance is related to dynamical 
correlation functions and 2) conductance is a property of an 
open quantum system. Do we need to do time-dependent 
calculations in infinitely large systems?
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Formulation of the problem as a 
BCFT

Let us consider one wire and take the continuum limit of 
the lattice quantum wire. The low energy effective 
description of the quantum wire is a Luttinger liquid, which 
is a critical theory of bosons. 

H =
X

j

·
¡tcyjcj+1 + h:c:+ V (nj ¡

1

2
)(nj+1 ¡

1

2
)

¸

HLL =

Z
dx

v

4¼

·
g(@x')

2 +
1

g
(@xµ)

2

¸
½(x) = @xµ(x)=(

p
2¼)

['(x); µ(x0)] = i¼sgn(x0 ¡ x)

nj = cyjcj



  

Formulation of the problem as a 
BCFT

At half-filling we have from the Bethe ansatz:

g =
¼

2 arccos (¡V=2t)
; v = ¼t

p
1¡ (V=2t)2

arccos (V=2t)
:

The action for one wire can then be written as:

S =
g

4¼

Z
d2x@¹'@

¹' =
1

4¼g

Z
d2x@¹µ@

¹µ

©
g<1, repulsive
g=1, non-interacting
g>1, attractive 



  

Formulation of the problem as a 
BCFT

1

2

M

M wires with no connection (no 
junction) can be described by a 
conformal field theory with M 
species of bosonic fields living 
on the infinite plane. 

Hypothesis: 
The universal behavior of a junction, i.e. at the 

renormalization group fixed point, can be generically 
described by a conformally invariant boundary 

condition.



  

Formulation of the problem as a 
BCFT

jBi

The junction modeled as a 
boundary conformal field 
theory with M species of 
bosonic fields  living on the 
upper half-plane. 

z = ¿ + ix

@ ´ @z =
1

2
(@¿ ¡ i@x)

¹@ ´ @¹z =
1

2
(@¿ + i@x)

µj ; j = 1 : : :M

Primary fields are the vertex operators and

JjL(z) =
ip
2¼

@ µj(z; ¹z)

JjR(¹z) = ¡ ip
2¼

¹@ µj(z; ¹z)
J. L. Cardy, Nucl. Phys. B 324, 581 (1989).
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Universal conductance in the BCFT 

Where in this BCFT is the conductance of the junction 
hiding?

Consider the Kubo formula

Jj = JjR ¡ JjL

First, we need to figure out how the current-
current correlation functions behave.

Let us write the currents in 
terms of the chiral ones:

Gij = lim
!!0+

¡e2

~
1

!L

Z 1

¡1
d¿ ei!¿

Z L

0

dx hT¿J i(y; ¿)Jj(x; 0)i:



  

Universal conductance in the BCFT 

Let us forget about the 
boundary for now and 
consider the CFT in the 
infinite plane. 

1
2

M

Different wires do not talk to each other and neither 
do the right-movers to the left-movers.

hT¿J iL(z1)JjL(z2)i = ¡ g

4¼2
±ij

(z1 ¡ z2)2

hT¿JiR(¹z1)JjR(¹z2)i = ¡ g

4¼2
±ij

(¹z1 ¡ ¹z2)2



  

Universal conductance in the BCFT 

Important observation:
Adding a boundary to the theory does not 
change the correlations between the chiral 
currents but adds new correlations between 
left-movers and right-movers. 

The boundary condition does not change the scaling 
dimension of the operators. The information about the 
boundary state is encoded in the coefficient.

hT¿J iL(z1)JjR(¹z2)i = ¡ g

4¼2
AijB

1

(z1 ¡ ¹z2)2

J. L. Cardy and D. C. Lewellen, Phys. Lett. B 
259, 274 (1991).



  

Universal conductance in the BCFT 

Let us go back to the Kubo formula and do the 
integrals:

Gij = g
e2

h

1

L

Z L

0

dx[AijB H(x+ y) +AjiB H(¡x¡ y)] = AijB g
e2

h

Recall the two difficulties of a numerical calculation of conductance:

fdynamical correlators ) time-dependent calculations

open quantum system )in¯nitely large systems

i 6= j



  

Universal conductance in the BCFT 

We have effectively solved the first difficulty. Conformal 
symmetry ties space and time together. The same coefficient 
appearing in a dynamical correlation function appears in a 
static one.

hT¿JiL(z1)JjR(¹z2)i = ¡ g

4¼2
AijB

1

(z1 ¡ ¹z2)2

hJ iL(x)JjR(x)iGS =
g

4¼2
AijB

1

(2x)2
A static ground 
state (GS) 
expectation value

x



  

Universal conductance in the BCFT 

So far, we can obtain the conductance by measuring the ground 
state expectation value of an operator. But we need a large enough 
system to faithfully approximate the semi-infinite plane.

dynamical correlators ) time-dependent calculations
p

open quantum system )in¯nitely large systems ?



  

Universal conductance in the BCFT 

So far, we can obtain the conductance by measuring the ground 
state expectation value of an operator. But we need a large enough 
system to faithfully approximate the semi-infinite plane.

dynamical correlators ) time-dependent calculations
p

open quantum system )in¯nitely large systems ?

Let us map the semi-infinite plane to a strip.

z = x+ i¿ w = u+ iv

w =
`

¼
ln z



  

Universal conductance in the BCFT 

We know how correlation functions change under a conformal transformation

hO(z)i = AOB (2x)
¡XO ) hO(w)i = jdw

dz
j¡XO hO(z)i

This gives us the conductance in terms of
 a ground state expectation value in a finite (closed) 

system.
   

x

hJ iL(x)JjR(x)iGS =
g

4¼2
AijB

h
2 sin(

¼

`
x)=

¼

`

i¡2

open quantum system )in¯nitely large systems
p
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Lattice model implementation: a 
new method

Let us go back to the tight-binding lattice model of the junction and 
make use of the the relationship we just derived to calculate the 
conductance.

hJ iL(x)JjR(x)iGS =
g

4¼2
AijB

h
2 sin(

¼

`
x)=

¼

`

i¡2
Gij = AijB g

e2

h

We can now measure the conductance by measuring a 
ground state expectation value in a finite system.

f
What exactly is this ¯nite system?

How to model chiral currents on the lattice?



  

Lattice model implementation: a 
new method

In the continuum, the chiral current are related to the physical current 
and charge density through

Jj(x) = v (JjR(x)¡ J jL(x)); N j(x) = JjR(x) + JjL(x)

It turns out that we can use the same relationship on the lattice if 
we measure the correlation function for two different wires.

cm cm+1

Jjm = i(cj
y
m+1c

j
m ¡ cj

y
mcjm+1)

N j
m =

1

2

³
njm + njm+1 ¡ hnjmi ¡ hnjm+1i

´

How to model chiral currents on the lattice?



  

Lattice model implementation: a 
new method

What exactly is this ¯nite system?

Let us go back to the conformal transformation.

fw =
`

¼
ln z )

v = 0 » x = 0; ¿ > 0

v = ` » x = 0; ¿ < 0

Same boundary condition at both ends of the finite system.



  

Lattice model implementation: a 
new method

H = Hboundary +Hbulk

H 0 = HL +H 0bulk +HR

HL = Hboundary

What about HR?

At v = 0 place the same junction as x = 0.



  

Lattice model implementation: a 
new method

Let us consider a non-interacting system 
for which the boundary condition can be 
written as an S-matrix. Having the same 
boundary condition means:

ªR(0) = SªL(0)

ªR(`) = SªL(`)



  

Lattice model implementation: a 
new method

Let us consider a non-interacting system 
for which the boundary condition can be 
written as an S-matrix. Having the same 
boundary condition means:

ªR(0) = SªL(0)

ªR(`) = SªL(`)

ªR(0) = ªout(0)

ªL(0) = ªin(0)

ªR(`) = ªin(`)

ªL(`) = ªout(`)

SR = SyL



  

Lattice model implementation: a 
new method

At half-filling, the switched role of the left-movers and 
right-movers can be implemented by particle-hole and 
time reversal transformations.

T (i) = ¡i

C(c) = cy

For example:

teiÁ ¡teiÁ

HR = T (C(HL)) = T (C(Hboundary)):
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Numerical benchmarks

First, let us consider a non-interacting Y-junction. The 
exact conductance can be calculated from the scattering 
matrix.



  

Numerical benchmarks

G12;21 =
4t2(1 + t2 § 2t sin ©)

1 + 6t2 + 9t4 + 4t6 cos2©

e2

h
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Application to an interacting Y-
junction

Consider a Y-junction of interacting 
quantum wires threaded by a 
magnetic flux. Several fixed points 
were theoretically predicted for this 
system.

C. Chamon, M. Oshikawa and I. Affleck, Phys. Rev. Lett. 91 (2003) 206403; 
M. Oshikawa, C. Chamon and I. Affleck, J.Stat.Mech. 0602 (2006) P008.

1 < g < 3



  

Application to an interacting Y-
junction

Chiral fixed point: M fixed point:

M stands for:

 Mystery

G21 = ¡2 g

3 + g2
(g + 1)

e2

h



  

Application to an interacting Y-
junction

We used our method to verify the prediction for the conductance 
of the chiral fixed point and calculate the conductance of the M 
fixed point.



  

Application to an interacting Y-
junction

What do we learn about the M fixed point? It has a different 
conductance than the chiral fixed point and a non-trivial 
dependence on the Luttinger parameter. 

Let us connect the junction to Fermi liquid leads.

¹G = (I +G¡1c G)¡1G G¡1c = (1 ¡ g¡1)=2

¹G(g = 1:5) =

0
@

0:8371 ¡0:4185 ¡0:4185
¡0:4185 0:8371 ¡0:4185
¡0:4185 ¡0:4185 0:8371

1
A ; ¹G(g = 2:0) =

0
@

0:8414 ¡0:4207 ¡0:4207
¡0:4207 0:8414 ¡0:4207
¡0:4207 ¡0:4207 0:8414

1
A

Conjecture: the g-dependence is such 
that the renormalized conductance is 
independent of g, we then have the 
entire g-dependence. 

¹G12 = 4=9
?
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Summary and conclusions

 We proposed  method that allows us to calculate the 
universal conductance of junctions of quantum wires under 
very generic conditions.

 The method related the conductance to coefficients in 
certain static correlation functions in a finite system 
constructed with the junction and an appropriate mirror 
image.

 Using time-independent DMRG, we successfully verified 
the conductance of a theoretical prediction for a non-trivial 
chiral fixed point and calculated the conductance of the M 
fixed point, a previously unsolved quantum impurity 
problem. 
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