Polarized Protons and Siberian Snakes

Mei Bai
Collider Accelerator Department
Brookhaven National Laboratory

Outline

- Introduction: why polarized protons
> spin "crisis"
\square Accelerating polarized protons to high energy
> beam dynamics in a synchrotron
> spin dynamics
> challenges and solutions
- Siberian Snake
> RHIC: the first polarized proton collider
\square Summary

Discovery of Spin: 1925

"This is a good idea. Your idea you are so young without any reputation, you would not lose anything by making a stupid mistake." --- Prof. Ehrenfest
G.E. UЋโenbeck and S. Goudsmit, $\mathcal{N a t u r w i s s e n s c h a f t e n ~} 47$ (1925) 953. A subsequent publication by the same authors, $\mathcal{N a t u r e} 117$ (1926) 264,

Spin Crisis:

 what makes up the proton spin?

Current model:
 Proton spin sum-rule

Quest to unveil the proton spin structure:

High energy proton proton collisions: gluon gluon collision and gluon quark collision

Synchrotron

- The acceleration comes from the electric field with an oscillating frequency synchronized with the particle's revolution frequency
- Alternating gradient
- A proper combination of focusing and defocusing quadrupoles yields a net focusing force in both horizontal and vertical planes
- FODO cell: most popular building block for synchrotrons

$$
\binom{x}{x^{\prime}}_{2}=\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{-2 f} & 1
\end{array}\right)\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{f} & 1
\end{array}\right)\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{-2 f} & 1
\end{array}\right)\binom{x}{x^{\prime}}_{1}
$$

Beam motion in a circular accelerator

- Closed orbit
- A particle trajectory remains constant from one orbital revolution to the next
- Closed orbit distortion: deviation from the center of the beam pipe
- Betatron oscillation
- An oscillatory motion around the closed orbit from turn to turn

$$
\frac{d^{2} x}{d s^{2}}+K_{x}(s) x=0 \longleftrightarrow x(s)=\sqrt{2 \beta_{x} J} \cos \left(2 \pi Q_{x} \theta(s)+\chi_{x}\right)
$$

Particle motion in a synchrotron

- Betatron oscillation:

$$
x(s)=\sqrt{2 \beta_{x} J} \cos \left(2 \pi Q_{x} \theta(s)+\chi_{x}\right)
$$

- Beta function: the envelope of the particle's trajectory along the machine
- Betatron tune: number of betatron oscillations in one orbital revolution

RF cavity

- Provide an oscillating electrical field to
- accelerate the charged particles
- keep the particles longitudinally bunched, i.e. focused
- A metallic cavity
- resonating at a frequency integer multiples of the particle's revolution frequency

$$
\begin{aligned}
& E_{z}(r, t)=E(r) e^{i 2 \pi f_{r f} t} \\
& B_{\theta}(r, t)=B(r) e^{i 2 \pi f_{r f} t} r t^{t}
\end{aligned}
$$

Spin motion:

 Thomas BMT Equation

Spin motion in a circular accelerator

- In a perfect accelerator, spin vector precesses around its guiding field along the vertical direction

- Spin tune Q_{s} : number of precessions in one orbital revolution. In general,

$$
\mathbf{Q}_{\mathrm{s}}=\mathbf{G} \gamma
$$

polarized proton acceleration challenges: preserve beam polarization

- Depolarization(polarization loss) mechanism

Come from the horizontal magnetic field which kicks the spin vector away from its vertical direction
Spin depolarizing resonance: coherent build-up of perturbations on the spin vector when the spin vector gets kicked at the same frequency as its precession frequency

Initial

$1^{\text {st }}$ full betatron Oscillation period

2nd full betatron
Oscillation period

imperfection spin resonance

- Source
- dipole errors, quadrupole mis-alignments
- Resonance location:

$\mathbf{G} \gamma=k, k$ is an integer

- Resonance strength:
- Proportional to the size of the vertical closed orbit distortion

Intrinsic spin resonance

- Intrinsic resonance
- Source: focusing field due to the intrinsic betatron oscillation
- Resonance location:

$$
G \gamma=k P \pm Q y,
$$

P is the super periodicity of the accelerator, $Q y$ is the vertical betatron tune

- Resonance strength:
- Proportional to the size of the betatron oscillation
- When crossing an isolated intrinsic resonance, the larger the beam is, the more the polarization loss is

Spin depolarization resonance in RHIC

Single resonance crossing

- Frossart-Stora formula

$$
P_{f}=P_{i}\left(2 e^{\frac{\left.\pi|\varepsilon|\right|^{2}}{\alpha}}-1\right)
$$

ε is the strength of the resonance. a is the speed of resonance crossing

overcoming spin depolarizing resonances techniques

- Harmonic orbit correction
- to minimize the closed orbit distortion at all imperfection resonances
- Operationally difficult for high energy accelerators
- Tune jump

- Operationally difficult because of the number of resonances
- Also induces emittance blowup because of the non-adiabatic beam manipulation

overcoming spin depolarizing resonances techniques

- AC dipole
- Induce full spin flip by using an AC dipole to adiabatically excite a coherent betatron oscillation with large amplitude

Quadrupole: horizontal Magnetic field linearly Proportional to the offset From magnet center

With coherent oscillation

- Can only correct strong intrinsic spin resonances

Innovative polarized proton acceleration techniques: Siberian snake

\square First invented by Derbenev and Kondratenko from Novosibirsk in 1970s [Polarization kinematics of particles in storage rings, Ya.S. Derbenev, A.M. Kondratenko (Novosibirsk, IYF) . Jun 1973. Published in Sov.Phys.JETP 37:968-973,1973, Zh.Eksp.Teor.Fiz.64:1918-1929,1973]
\square A group of dipole magnets with alternating horizontal and vertical dipole field rotates spin vector by 180°

Particle trajectory in a snake:

How to preserve polarization using Siberian snake(s)

\square Use one or a group of snakes to make the spin tune to be at $\frac{1}{2}$

\square Break the coherent buildup of the perturbations on the spin vector

UVA Nuclear Physics Seminar

Accelerate polarized protons in RHIC

Polarized proton setup in the Booster

Booster

- Kinetic Energy: 200MeV ~ 1.42 GeV
- Intrinsic spin resonances are avoided by setting the vertical betatron tune above the spin precession tune at extraction
- A total of 2 imperfection resonances and they are corrected by the harmonic correction of the vertical closed orbit closed orbit

Polarized proton setup in the AGS

\square AGS (Alternating Gradient Synchrotron)

- Energy: 2.3 GeV ~ 23.8 GeV
- A total of 41 imperfection resonances and 7 intrinsic resonances from injection to extraction
> One 5.9\% partial snake plus one 10~15\% partial snake

$$
\cos \pi Q_{s}=\cos G \gamma \pi \cos \frac{\Psi_{1}}{2} \cos \frac{\Psi_{2}}{2}-\cos G \gamma \frac{\pi}{3} \sin \frac{\Psi_{1}}{2} \sin \frac{\psi_{2}}{2}
$$

Spin tune with two partial snakes

AGS polarized proton development

| | imperfection | intrinsic | Setup time | Energy
 GeV | Int
 $\left[10^{11}\right]$ | Pol
 $[\%]$ |
| :---: | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| 1988 | Harmonic
 correction | Fast tune jump | Months | 21.7 | 0.108 | 42 |
| 1994 | 5\%solenoid
 partial snake | Fast tune jump | 2 weeks | 23.0 | 0.05 | 31 |
| 1998 | 5\%solenoid
 partial snake | AC dipole @ 3
 strong intrinsic
 resonance | 2 weeks | 23.0 | 0.05 | 37 |
| 2000 | New polarized H- source with high current high polarization | | | | | |
| 2005 | 5\%helical
 partial snake
 AC dipole @ 4
 strong intrinsic
 resonance | 2 weeks | 23.8 | 1.0 | 50 | |
| 2005 | 5\% helical partial snake +10\%
 super-conducting helical
 partial snake | 2 weeks | 23.8 | 1.5 | 65 | |

Polarized proton acceleration setup in RHIC

\square Energy: 23.8 GeV ~ 250 GeV (maximum store energy)

- A total of 146 imperfection resonances and about 10 strong intrinsic resonances from injection to 100 GeV .
> Two full Siberian snakes

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{s}}=\frac{1}{\pi}\left|\varphi_{1}-\varphi_{2}\right| \\
& \xrightarrow{\longrightarrow} \mathrm{Q}_{\mathrm{s}}=\frac{1}{2}
\end{aligned}
$$

snake depolarization resonance

- Condition

$$
m Q_{y}=Q_{s}+k
$$

\square even order resonance

- Disappears in the two snake case like RHIC if the closed orbit is perfect
\square odd order resonance
- Driven by the intrinsic spin resonances

Snake resonance observed in RHIC

How to avoid a snake resonance

- Keep the spin tune as close to $1 / 2$ as possible
- snake current setting

[^0]
How to avoid a snake resonance

\square Keep the spin tune as close to $1 / 2$ as possible

- snake current setting
- Keep the horizontal orbit at the two snakes parallel
\square Keep the vertical closed orbit as flat as possible
- orbit control
\square Keep the betatron tunes away from snake resonance locations
- Precise tune control

RHIC Polarization vs. Beam Energy

> 100 GeV and above measurements use analyzing power calibrated at 100 GeV using H Jet polarimeter
$>$ Estimated systematic error of analyzing power is ~10\%

Measured Snake Resonance Spectrum

Reach polarization of 70\% or higher

- RHIC:
- accelerate close to 0.675 between 100 GeV and 250 GeV
- Tighter control of local orbit at rotators during store
- CNI polarimeter improvement
o AGS:
- Horizontal tune jump quad to avoid polarization losses at horizontal resonances
- Source:
- Upgrade to achieve ~90\% polarization

Summary

High energy polarized protons are desirable for unveiling the secret of the proton spin structure
\square Accelerating polarized protons in a circular accelerator is challenged by the depolarizing mechanisms during the acceleration

The great invention of Siberian snake made it possible for preserving polarization when accelerating protons to high energy
R RHIC as the world's first high energy polarized proton collider has been successfully accelerating polarized protons up to 100 GeV with no polarization loss
With the new tune to avoid snake resonance, it is promising to preserve 90% or higher polarization up to 250 GeV in the coming RHIC pp run

Acknowledgement

L. Ahrens, I.G. Alekseev, J. Alessi, J. Beebe-Wang,
M. Blaskiewicz, A. Bravar, J.M. Brennan, D. Bruno,
G. Bunce, J. Butler, P. Cameron, R. Connolly, J. Delong,
T. D'Ottavio, A. Drees, W. Fischer, G. Ganetis, C. Gardner,
J. Glenn, T. Hayes, H-C. Hseuh. H. Huang, P. Ingrassia,
U. Iriso-Ariz, O. Jinnouchi, J. Laster, R. Lee, A. Luccio,
Y. Luo, W.W. MacKay, Y. Makdisi, G. Marr, A. Marusic,
G. McIntyre, R. Michnoff, C. Montag, J. Morris, A. Nicoletti,
P. Oddo, B. Oerter, J. Piacentino, F. Pilat, V. Ptitsyn,
T. Roser, T. Satogata, K. Smith, D.N. Svirida, S. Tepikian,
R. Tomas, D. Trbojevic, N. Tsoupas, J. Tuozzolo, K. Vetter, M. Milinski. A. Zaltsman, A. Zelinski, K. Zeno, S.Y. Zhang.

$\underset{\text { BATIONAL LABORATORY }}{\text { BRDMEN }}$

[^0]: - Blue FY04 flatten orbit
 \triangle Yellow FY04 zero orbit
 - Yellow FY05 Zero orbit
 - Blue FY05 flatten orbit
 - Yellow FY05 flatten orbit

