Tales From The "Dark Side" of Particle Physics

(The Dark-Light Connection)

Based on H. Davoudiasl, H-S Lee &WJM

Viewer Discretion Advised

Beware the Ides of March!

William J. Marciano The Best of Times or The Worst of Times? (March 15, 2012)

Bullet Galaxy Cluster

5% Visible Matter

25% Dark Matter

70% Dark Energy

Visible Matter

- Elementary Particle Physics
- SU(3)_CxSU(2)_LxU(1)_Y Standard Model 8 gluons + W[±], Z, γ (spin 1) gauge bosons 3 generations of quarks & leptons (mix->CP violation) e,v_e,u,d μ,v_μ,c,s τ,v_τ,t,b (m_t/m_v >10¹³!!) Scalar (spin 0) Doublet: S[±],S⁰,H source of mass <u>Almost Complete! Where's the Higgs (H)?</u> <u>Remnant of Particle Mass Origin</u>

How did we arrive at the Standard Model? What Else Is There? New Particles? Interactions? <u>How does dark matter fit in?</u>

Ancient History - At a Glance

Maxwells Equations (E&M) 1861

1897 *Electron* Discovered

Quantum Mechanics (y photon) – Special Relativity

<u>1919</u> **Proton** Discovered

Spin, Atomic Physics (magnetic moment $\mu_e = g_e e/2m_e S$), $g_e = 2$

1928 The Dirac Equation *The Genius of Dirac*

QM+Special Rel.+Spin+EM Gauge Invariance

First Order Equation

 $i(\partial_{\mu} - ieA_{\mu}(x))\gamma^{\mu}\psi(x) = m_{e}\psi(x), g_{e}=2$ (automatic!)

4x4 γ^{μ} (Dirac) matrices: $\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}I$

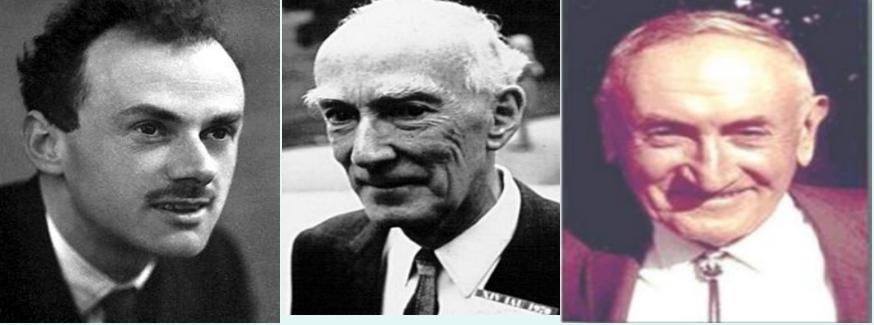
Dirac predicts positron, antiproton, antihydrogen...

<u>1929</u> Electromagnetic Gauge Invariance – H. Weyl

- <u>1930</u> Pauli Proposes the <u>Neutrino</u> (weak interactions)
- <u>1931</u> <u>Neutron</u> Discovered (strong interactions)
- <u>1932</u> <u>**Positron**</u> Discovered (Anti-Matter Exists!)

Antimatter Discovery Dirac's crowning glory!

Doubled Fermion Particle Spectrum (e⁻p⁺ + e⁺p⁻)!


Why is the Universe Matter-Antimatter Asymmetric?

What happened to the antimatter?

Baryogenesis! Leptogenesis! <u>"New Physics" Source of CP Violation Needed!</u> Supersymmetry, 4th Generation, Multi-Higgs...

<u>1932-33's Astronomers start to see "Dark Matter" Evidence!</u> Jan Ort & Fritz Zwicky

Dirac Ort Zwicky

Post WWII Developments (1947-48)

<u>**1947**</u> Lamb measures the $2P_{\frac{1}{2}}$ - $2S_{\frac{1}{2}}$ splitting vacuum polarization, electron self-interaction

<u>1948</u> Schwinger Calculates: a_e=(g_e-2)/2=α/2π≈<u>0.00116</u> (α=e²/4π=1/137)

Agreed with measurement of <u>Kusch</u> & Foley! *a_e* and Lamb shift start of QED (Quantum Electrodynamics)

Current Status of $a_e = (g_e - 2)/2$ $a_e(exp) = 0.00115965218073(28)$ $g_e(exp) = 2.00231930436146(56)$ 13 significant figures! <u>QED tested at the (α/π)⁵ level!</u> $\alpha^{-1}(a_e) = 137.035999084(51)$ Best Determination Mount Auburn Cemetery

Muon Physics

<u>1947</u> Muon established m_µ≈ 207m_e "Who ordered that?" τ_µ=2.2x10⁻⁶sec <u>very long</u>

 $\Delta a_{\mu} = a_{\mu}^{exp} - a_{\mu}^{SM} = 287(63)(49) \times 10^{-11} (3.6 \sigma!)$ very large deviation!

Muonic Hydrogen Lamb Shift Exp – QED deviates by 5-8*σ*!

Signs of "New Physics"?

Precision Measurements Probe: "High and Low Scales" Supersymmetry – <u>Dark Bosons</u>

Electroweak Unification - Glashow & Weinberg

- 1954 Yang Mills SU(2) Theory (BNL Paper)
- 1957 Schwinger SO(3) (W⁺, γ, W⁻) triplet
- "It really doesn't matter what your thesis subject is.
 What counts is your choice of an advisor"

S.L. Glashow

<u>Glashow</u> (1961) SU(2)xU(1) (W⁺, W⁰, W⁻) B⁰ *"No Higgs Mechanism" m_W & m_z arbitrary* (put in by hand)

 $\begin{array}{ll} \gamma = \mathsf{B}\mathsf{cos}\theta + \mathsf{W}^0\mathsf{sin}\theta & \mathsf{massless photon} \\ \mathsf{Z} = \mathsf{W}^0\mathsf{cos}\theta - \mathsf{B}\mathsf{sin}\theta & \mathsf{massive neutral gauge boson} \\ & \underline{\mathsf{e=gsin}\theta} & \mathit{birth of the weak mixing angle} \\ & \underline{(Given Little Attention)} \end{array}$

<u>Weinberg</u>(1967) SU(2)xU(1) + <u>Higgs Mechanism</u>

generates W[±]&Z masses spontaneous sym. Breaking via complex scalar doublet

m_w=m_zcosθ & e=gsinθ

<u>Z Boson:</u> New Source of Parity Violation! Weak Neutral Currents Flavor Changing Weak Neutral Currents s→dμ⁺μ⁻

Largely ignored until 'tHooft proved renormalizability (1971) Weak Neutral Currents Discovered (1972) Neutrino scattering!

 $\theta \rightarrow \theta_{W}$ <u>Weinberg or Glashow or Weak Mixing Angle</u> <u>Most important Electroweak Parameter!</u>

A Beautiful Relation

SU(2)_LxU(1)_Y + Higgs Doublet + Renormalizability

• $sin^2 \theta_W^0 = 1 - (m_W^0/m_Z^0)^2 = (e^0/g^0)^2$ Natural Bare Relation Quantum (Loop) Corrections - Finite & Calculable!

> sin²θ_W, m_W, m_Z, e, g interrelated α=e²/4π G_μ= g²/4√2m_W² (Fermi Constant)

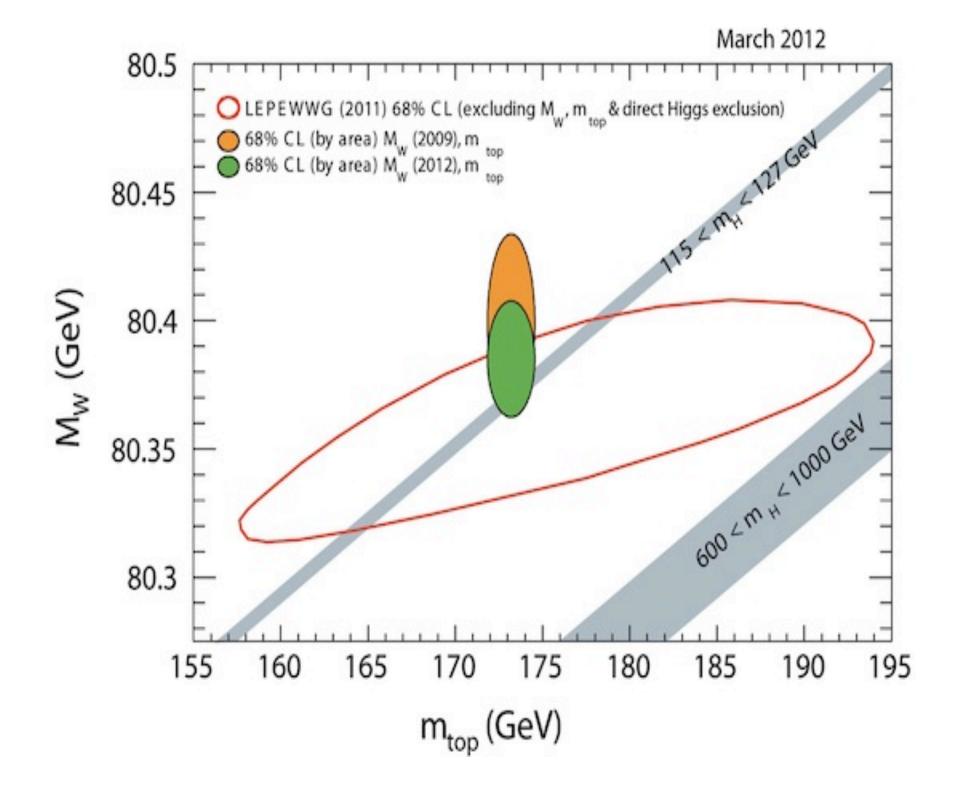
Precision Measurements probe quantum loops $\Delta r(SM, "New Physics")_{MS} = 1 - \pi \alpha / \sqrt{2}G_{\mu}m_{W}^{2}sin^{2}\theta_{W}(m_{Z})_{MS}$ $\Delta r(SM, m_{H}, "New Physics") = 1 - \pi \alpha / \sqrt{2}G_{\mu}m_{W}^{2}(1 - m_{W}^{2}/m_{Z}^{2})$

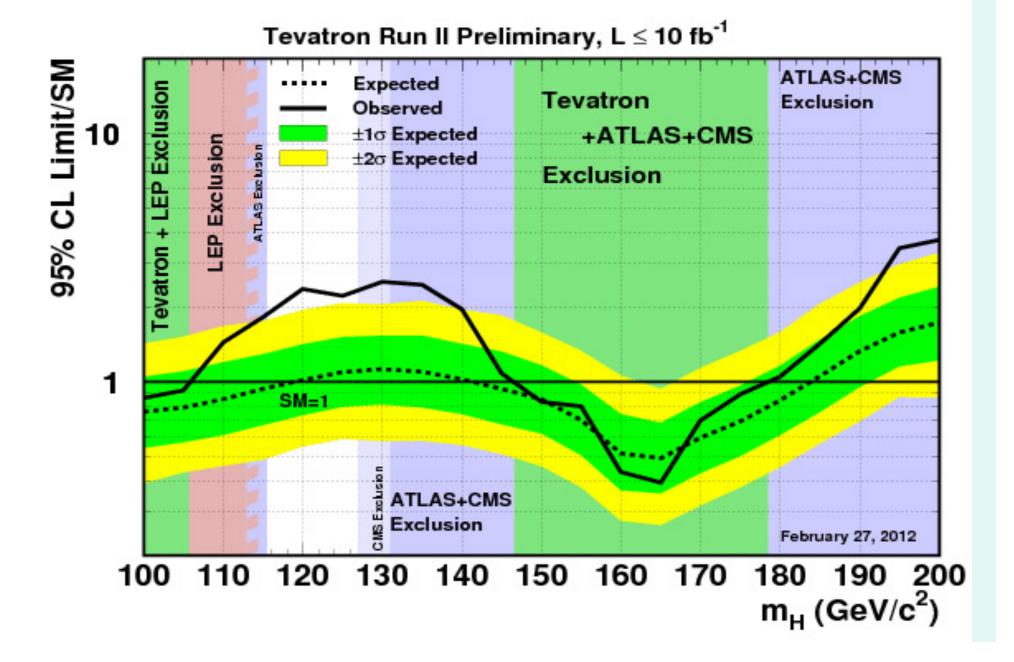
Loop and Tree Level Corrections to Muon Decay ñ Technicolor SUSY

New Precise Muon (µ⁺) Lifetime

 $τ_{μ+}$ =2.1969803(22)x10⁻⁶sec MuLAN at PSI (2010) (Most precise lifetime measurement ever!) Previous World Average $τ_{μ+}$ =2.1970190(210)x10⁻⁶sec improved by a factor of 10! 1.8 sigma shift!

$$\tau_{\mu}^{-1} = \Gamma(\mu^+ \rightarrow e^+ \nu_e \nu_{\mu}(\gamma)) = G_{\mu}^2 m_{\mu}^5 f(m_e^2/m_{\mu}^2) [1 + RC] / 192\pi^3$$


RC = $\alpha/2\pi(25/4-\pi^2)(1+\alpha/\pi[2/3ln(m_{\mu}/m_e)-3.7)...]$ Fermi Th. Other SM and "New Physics" radiative corrections absorbed into G_µ. Eg. Top Mass, Higgs Mass, Technicolor, Susy, W*...


G_u=1.16637887(7)x10⁻⁵GeV⁻² precise & important

Precision Parameters (status):

<u>Quantity</u>	<u>2006 Value</u>	<u>2011 Value</u>	<u>Comment</u>
α^{-1}	137.035999710(96)	<u>137.035999084(51</u>	g _e -2
G_{μ}	1.16637(1)x10 ⁻⁵ GeV ⁻²	1.1663788(7)x10 ⁻⁵ €	GeV ⁻² PSI
mz	91.1875(21)GeV	91.1876(21)GeV	-
*m _t	171.4(2.1)GeV -	→ <u>173.2(0.9)GeV</u>	FNAL
m _w	80.410(32)GeV	→ <u>80.399(25)GeV</u>	LEP2/FNAL
$sin^2 \theta_W(n$	ר _z) 0.23125(16)	0.23125(16)	Ave.

 $m_{\rm H}$ =90GeV central prediction 114GeV<m_H<140GeV 2012 shift m_W = 80.399(25)GeV \rightarrow 80.387(19)GeV CDF 80.375(23)GeV DO

What About $\sin^2 \theta_W$?

 $sin^2\theta_W(Q^2)$ = Physical Running Angle

Continuous

Incorporates yZ mixing loops: quarks, leptons, W[±]

Precision measurements at the Z Pole (e⁺e⁻→Z→ff)

Best Determinations

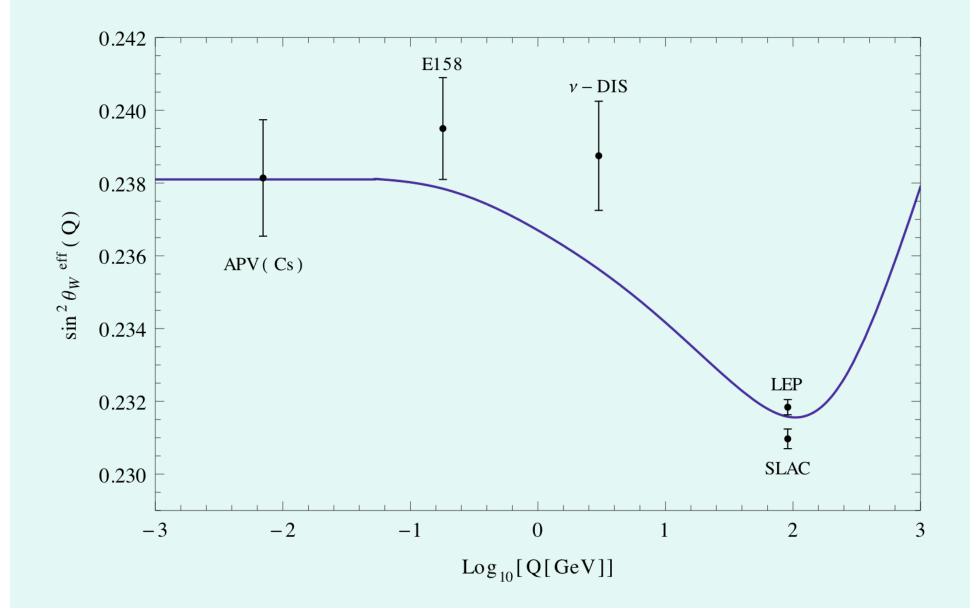
 $sin^{2}\theta_{W}(m_{Z})_{MS} = 0.23070(26)$ $sin^{2}\theta_{W}(m_{Z})_{MS} = 0.23193(29)$ (3.2 sigma difference!)

A_{LR} (SLAC) A_{FB}(bb) (CERN)

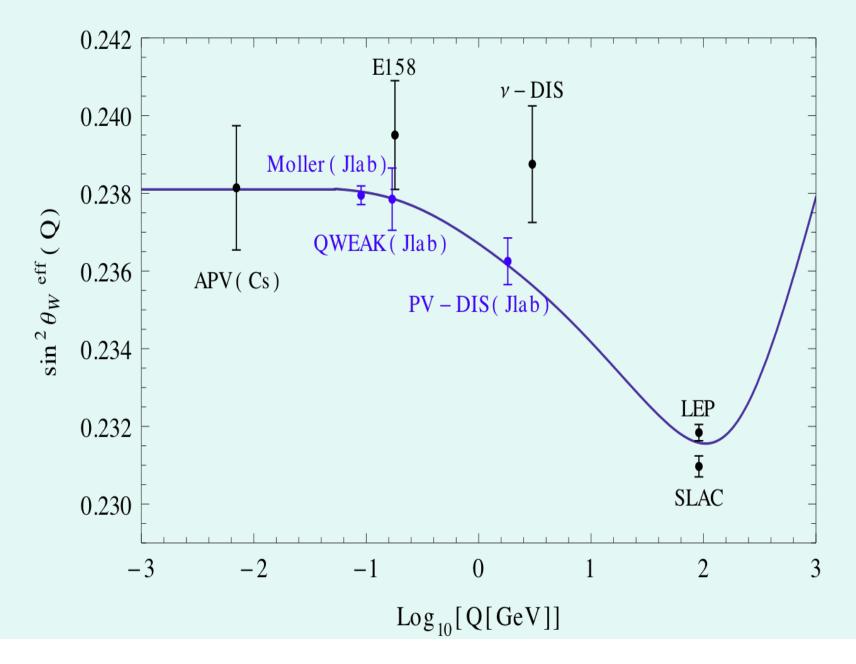
Leptonic vs Hadronic Z Pole Averages

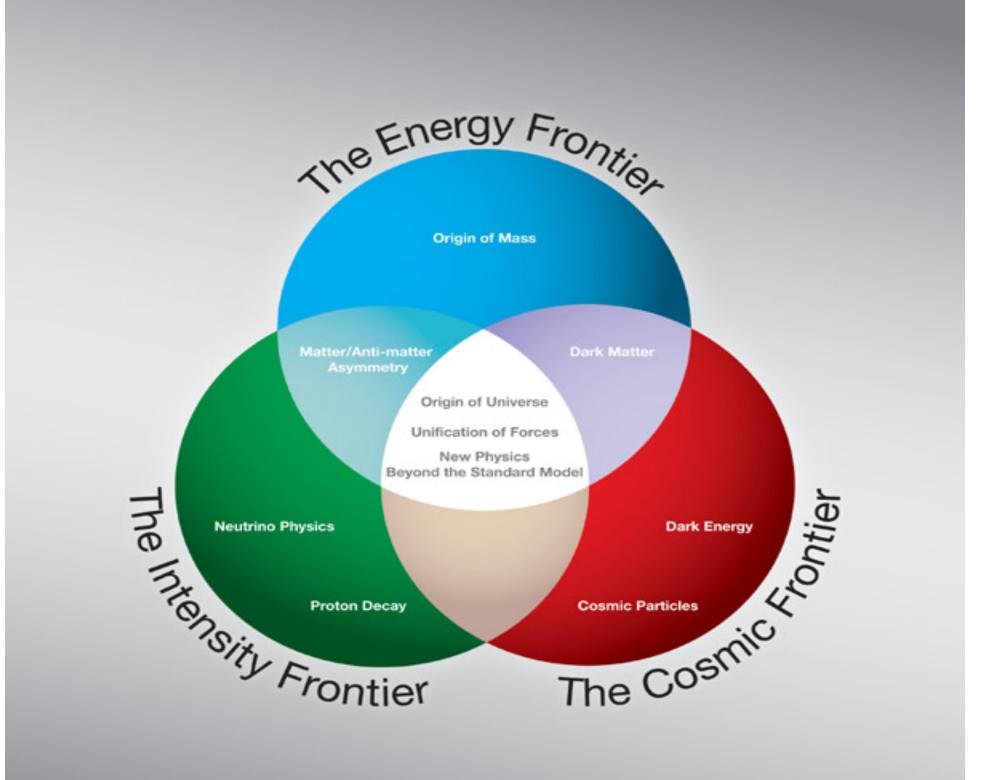
$$sin^{2}\theta_{W}(m_{Z})_{MS} = 0.23085(21)$$

 $sin^{2}\theta_{W}(m_{Z})_{MS} = 0.23194(27)$
(Also differ by > 3sigma)


Leptonic Hadronic

<u>World Average</u>: sin²θ_w(m_z)_{MS}=0.23125(16) <u>IS IT CORRECT?</u>


(Major Implications) Higgs & "New Physics"


Average → m_H≈ 115GeV

Running $sin^2\theta_W(Q^2)$

Running of $\sin^2\theta_W(Q)$

The Higgs Search Has Narrowed: 115GeV<m_H<135GeV Hints of m_H≈125GeV at CERN H→γγ, WW*, ZZ* Approx 75,000 H/exp!

H Decay Channel	Branching Ratio
$b\overline{b}$	0.578
WW^*	0.215
gg	0.086
$\tau^+\tau^-$	0.063
$car{c}$	0.029
ZZ^*	0.026
$\gamma\gamma$	$2.3 imes10^{-3}$
$Z\gamma$	$1.5 imes10^{-3}$
$H \to ZZ^* \to \ell_1^+ \ell_1^- \ell_2^+ \ell_2^-$	$1.2 imes 10^{-4}$
$H \to ZZ^* \to \ell^+ \ell^- \nu \bar{\nu}$	$3.6 imes10^{-4}$

What if m_H=125GeV?

Implies: $m_W = 80.361(10)GeV vs 80.384(17)GeV now$ $sin^2\theta_W(m_Z) = 0.23130(10) vs 0.23125(16) now$

> Pretty Good Agreement! Not much room for "New Physics"

So far: No direct evidence for Supersymmetry, Extra Dimensions, 4th Generation, New Dynamics...

At The LHC!

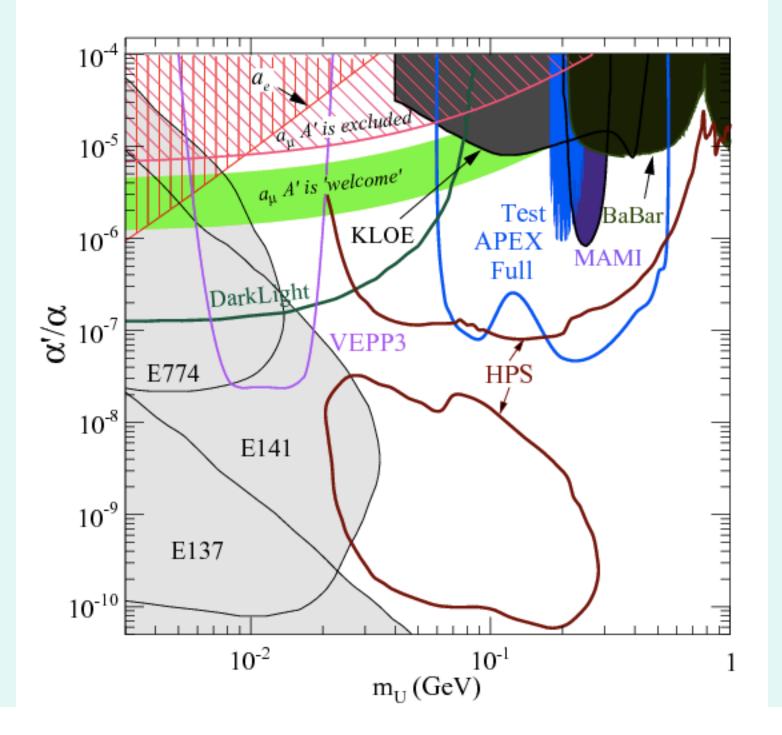
The Higgs – Last Particle Ever Discovered?

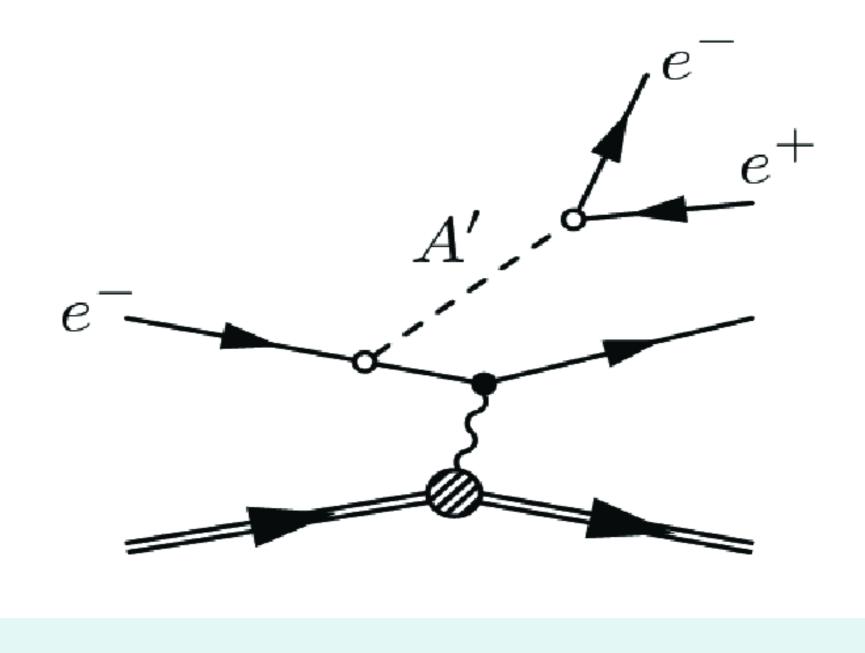
<u>The Dark Boson</u> <u>A Portal to Dark Matter</u>

 Searches for Dark Matter Particles (Mainly WIMPS) Astrophysics - Possible Hints LHC (Supersymmetry) No sign yet Underground Scattering – Conflicting Experiments

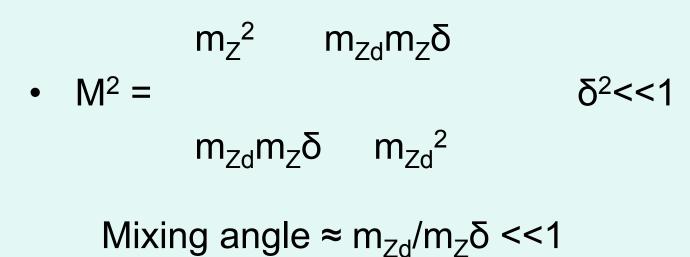
Is dark matter just a single particle?

Are there many dark particles (most unstable) Does Dark Matter have gauge symmetries? Dark Charge? What if $U(1)_d \rightarrow Z_d$ 10MeV<m_{Zd}<10GeV ? (Sometimes called Dark Photon or Dark Z)


Z_d coupling to our particle world


• Kinetic Mixing (Bob Holdom) $U(1)_Y \& U(1)_d$ $\Rightarrow \epsilon/2 F_{\mu\nu}Z_d^{\mu\nu} \Rightarrow \epsilon e Z_d^{\mu}J_{\mu}^{em}$ no J_{μ}^{NC} coupling!

> $\epsilon \le \text{few x 10}^{-3}$ 10MeV $\le m_d \le \text{few GeV}$ $\alpha'/\alpha = \epsilon^2$


ε≈2x10⁻³ & m_d≈10-200MeV resolves a_µ discrepency!

produce in electron scattering detect Z_d→e⁺e⁻ Experiments at JLAB and MAMI (Mainz)

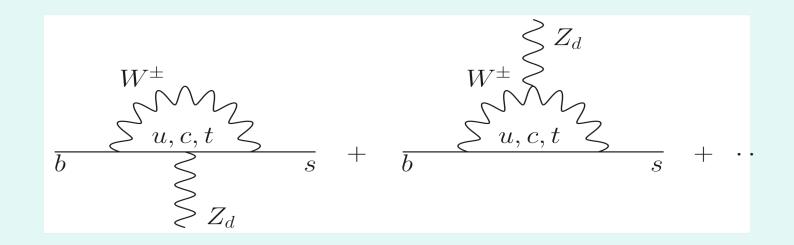
Z-Z_d Mass Mixing H.Davoudiasl, H-S Lee & WJM arXiv:1203.2947

Gives rise to: $g/2cos\theta_W(m_{Zd}/m_Z\delta)J_{\mu}^{NC}$ Like a Z with smaller mass (10MeV-10GeV) and couplings

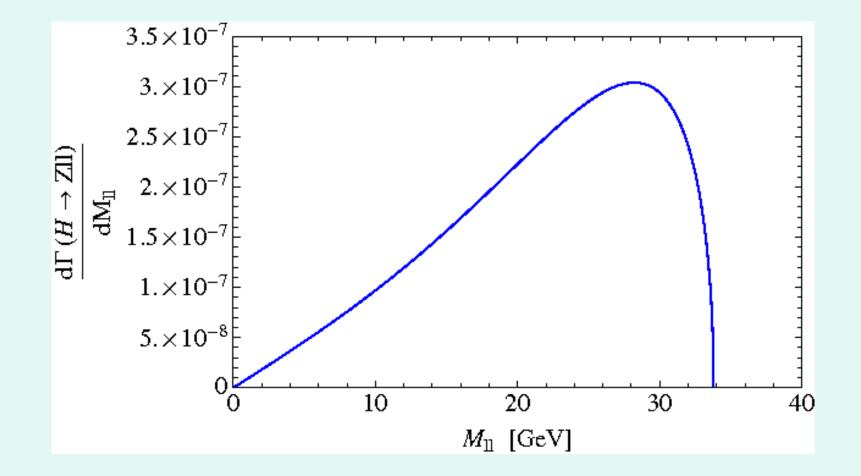
<u>New Effects from δ</u>

• New Parity Violation: Atomic PV & Polarized ee & ep

Flavor Changing Decays $K \rightarrow \pi Z_d, Z_d \rightarrow e^+e^- \text{ or } vv$ $B \rightarrow KZ_d$ ""


 $H \rightarrow ZZ_d \quad Z_d \rightarrow I^+I^-$ (I=e or μ) or "missing energy"

Longitudinal Z_d


All are enhanced by E/m_{Zd} overcomes m_{Zd}/m_Z suppression

Experimental sensitivities δ below 10⁻³! (B & K decays) Should be pushed as far as possible!

Flavor Changing neutral current decays

Conclusions

 Precision measurements seem to be starting to pinpoint m_H≈ 100-125 GeV with little room for "New Physics" Standard Model Higgs – Is that all there is?

So far no real sign of "New Physics" at the LHC Where is supersymmetry?

Strong Cosmic Evidence for Dark Matter We need Laboratory Evidence!

Look for Z_d wherever possible – Portal to Dark Matter Parity Violation, Rare K, B & H Decays