

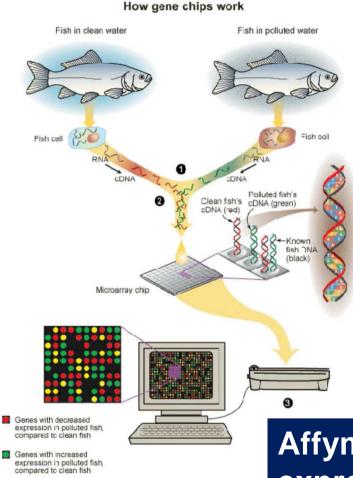
Diving For Treasure in Complex Data From Roman Urns To Mid-East Earthquakes

Marvin Weinstein and David Horn

What's The Problem ?

If a grocery store customer buys formula and diapers, how likely are they to buy beer ?

Biology and Medicine

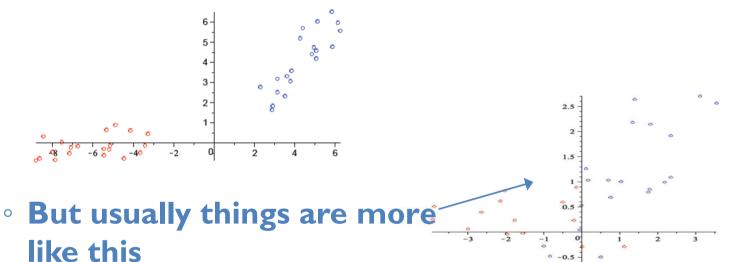


Genes expressed at the same level in polluted fish and clean fish

Genes not expressed in either fish Affymetrix chip measures the expression of ~7000 genes. Can we identify types of Leukemia from gene expression alone ?

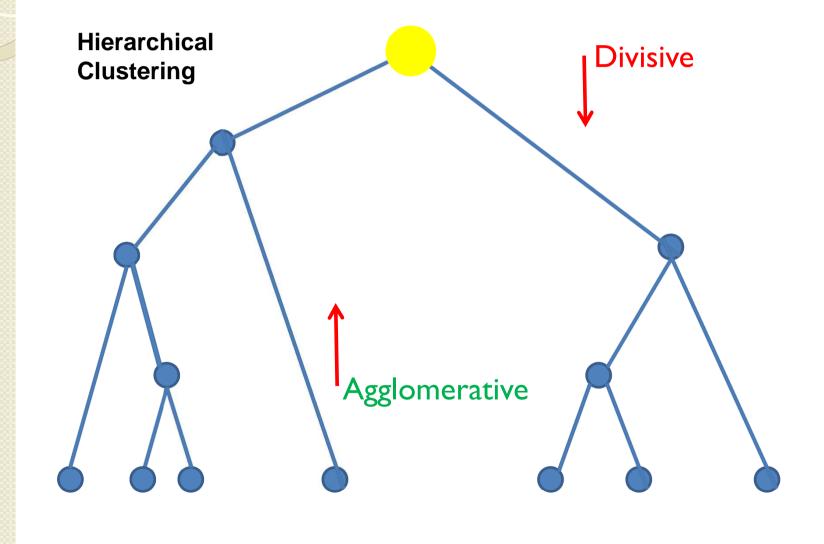
What Is Clustering ?

- Plot the data and look for places where there are "more" things near one another.
 - If clusters are obvious, then no problem !



 Actually we need more than simple clustering algorithms! We now know complex data shows complex structures!!!

Most Clustering Algorithms Make Assumptions

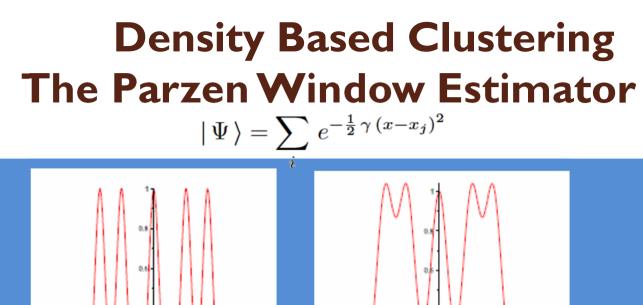


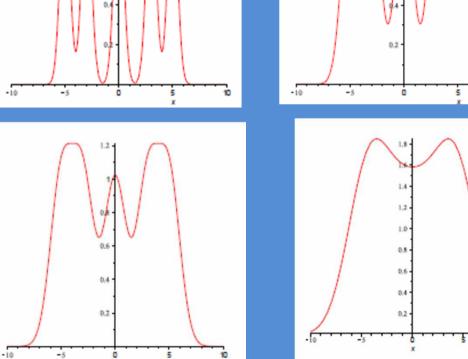
DQC – dynamic quantum clustering

 DQC is very different from existing methods: it doesn't make assumptions!

- I: DQC maps the problem into a problem in quantum mechanics
- 2: Then DQC uses the properties of the quantum problem to have both ordinary clusters and extended structures form dynamically (we find extended structures to be common in complex data).

• 3: DQC is highly visual and well suited to exploration and discovery





x

A Quantum Potential As A Proxy For Density

Amplifying peaks and valleys...

 Given: A wave-function that is a sum of Gaussians. Quest: Is there a potential for which it is the ground-state of the Schrodinger equation ?

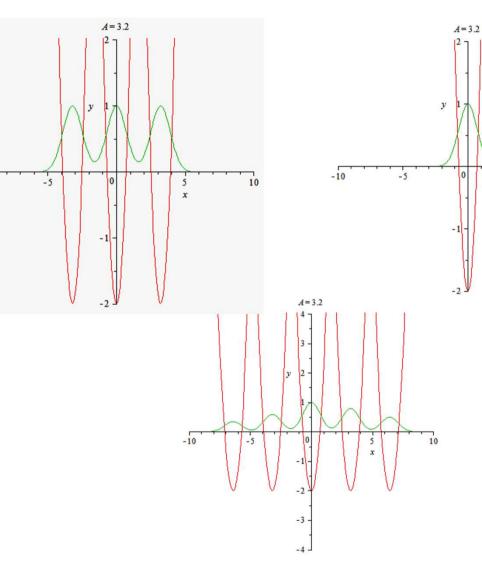
• Yes!!!

$$-\frac{1}{2} \nabla^2 \psi(\vec{x}) + V(\vec{x}) \psi(\vec{x}) = 0$$
$$V(\vec{x}) = \frac{\nabla^2 \psi(\vec{x})}{2 \psi(\vec{x})}$$

-10

Parzen vs Potential

0



Green is the sum of

10

5

x

Gaussians

Red is the potential

The Potential For Crabs In 2

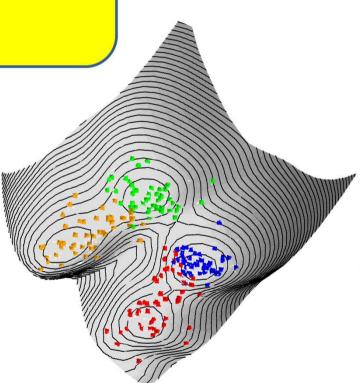
- The Crab problem Once upon a time there was a museum which had a display case with 200 crab carapaces.
 - The crabs were distinguished by color, male female and one of two species
 - But the shells sat in the sun for many years and faded

So, in an attempt to reclassify them, they made 5 measurements of size of shell and claws.

The Potential For Crabs In 2-d

Procedure:

- Create the Parzen window estimator (a sum of Gaussians in 2-dim)
- Form the potential function
- Result:The minima capture the clusters to a high degree.
 - **Problem: In high dimensions,** finding minima and moving points is difficult.



Strategy: Roll The Points Downhill

• We have a potential function

$$V(\vec{x}) = \frac{\nabla^2 \psi(\vec{x})}{2 \psi(\vec{x})}$$

• Each component wave-function is centered on the original data point \vec{x}_{α} .

• **Thus**
$$\vec{x}_{\alpha} = \langle \psi | \vec{x} | \psi \rangle$$

$$\begin{vmatrix} \Psi_t \rangle = e^{-itH} | \Psi \rangle$$

$$\langle \vec{x} \rangle (t) = \langle \Psi_t | \vec{x} | \Psi_t \rangle$$

$$\frac{d^2 < \vec{x} > (t)}{dt^2} = - \langle \Psi_t | \vec{\nabla} V(\vec{x}) | \Psi_t \rangle$$

Key Equations

• The full set of equations

- $H = \frac{p^{2}}{2m} + V(x)$ $H_{ij} = \langle |\Psi_{i}| |H| |\Psi_{j} \rangle$ $N_{ij} = \langle |\Psi_{i}| |\Psi_{j} \rangle$ Metric $\vec{X}_{ij} = \langle |\Psi_{i}| |\vec{x}| |\Psi_{j} \rangle$
- Exponentiate the finite matrix in the orthonormal basis and thus compute the time evolution of the expectation values of the position operators.

More Complex Data

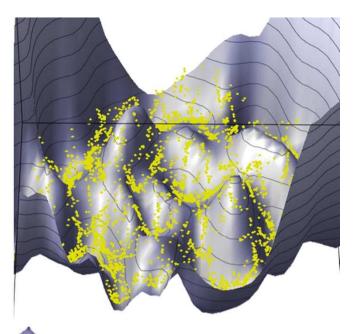
• Let us take a look at data we understand:

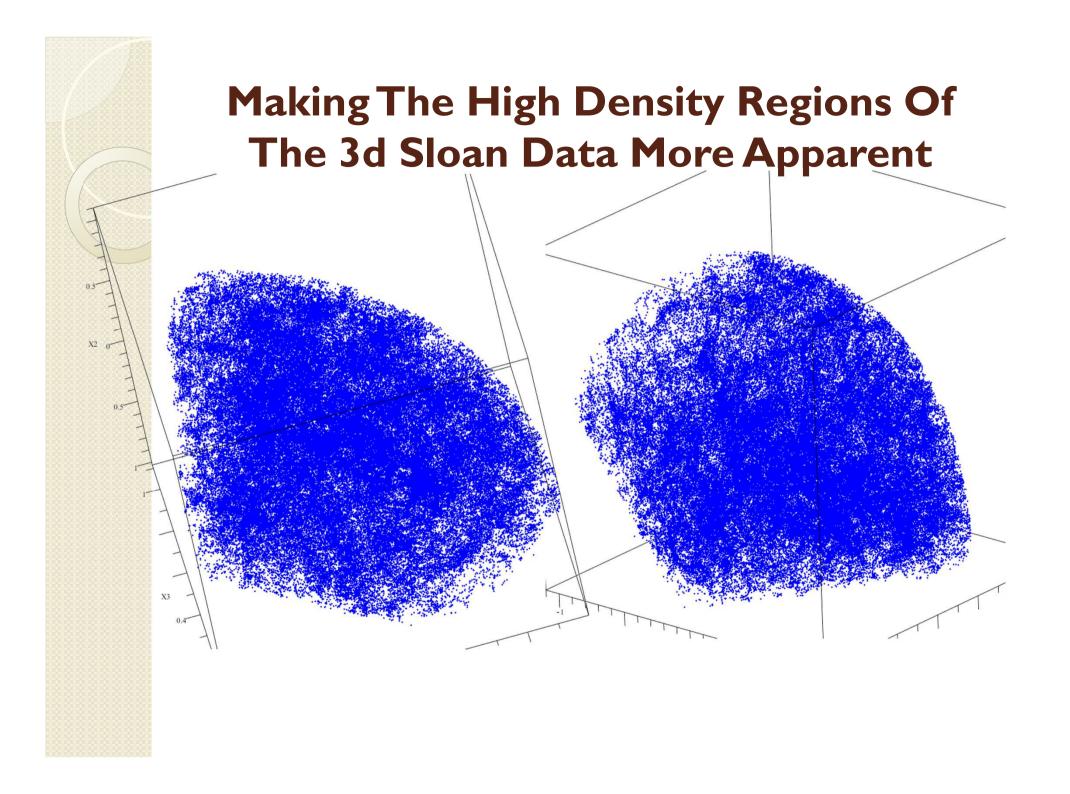
 We are looking at a slice of Sloan Digital Sky Data for a narrow range in the z coordinate (redshift mapped to z) and plotting the potential it creates

 As with the crabs, we put the actual points on the potential

Sloan Data

Take a thin slice in z
Sigma = 0.1

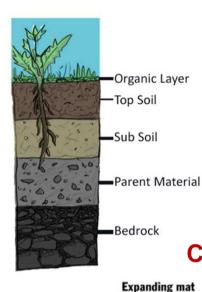




Beyond Simple Clustering TXM Xanes meets DQC

Marvin Weinstein Apurva Mehta Florian Meirer Allison Hume (SULI student)

Hierarchically Heterogeneous Materials



enclosure for the monolith

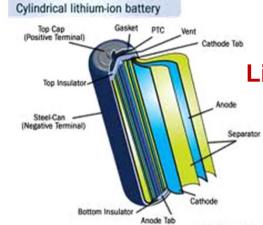
Lambda

Measures the

exhaust gas

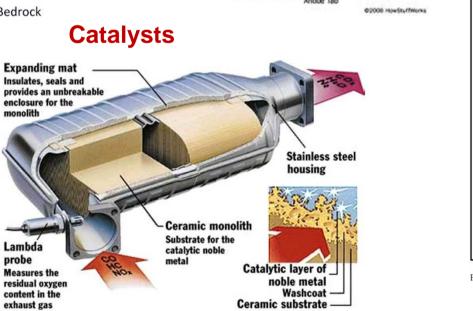
residual oxygen content in the

probe



Lithium Ion Batteries

Biomaterials - Bone



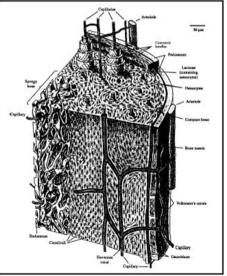


Fig. 8.23. Internal cellular structure of bone (redrawn from Guyton⁸⁶³)

Proto-Sigilatta: Black Gloss Pottery Advanced Material of 2000 years ago

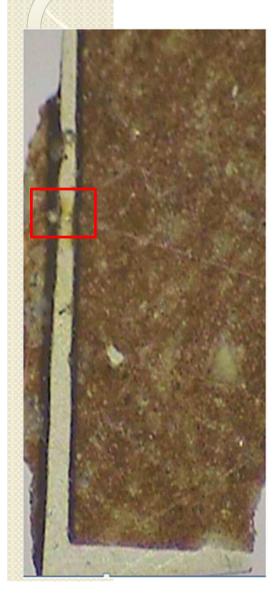
Red Body, Black Slip

Both colors from oxides of Fe

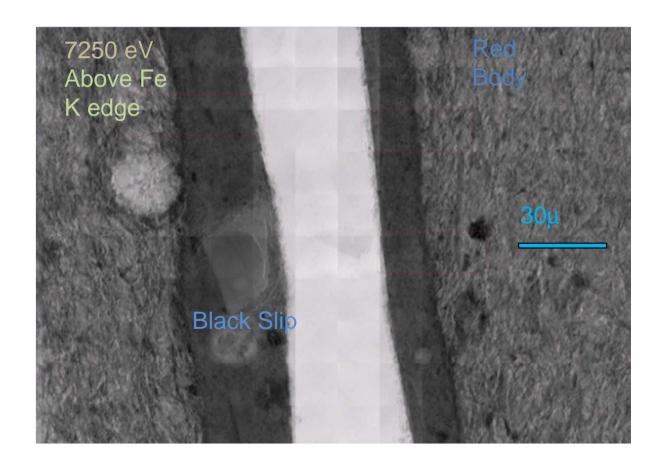
How does one keep the body Red/oxidized and the Slip Black/reduced?

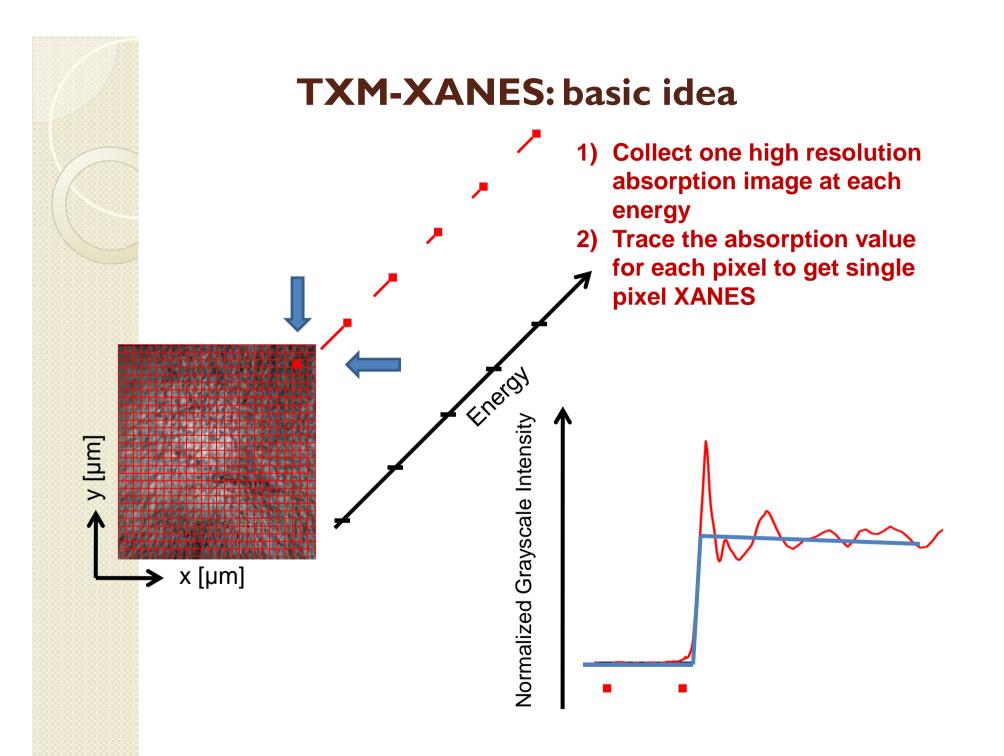
One of the Benchmark Technological Advancement

Transmission X-ray Microscopy 30 nm resolution

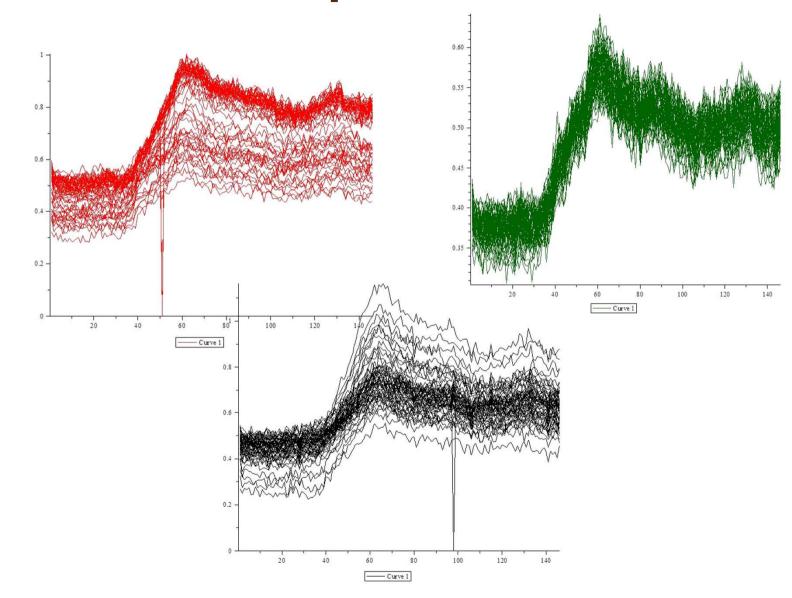


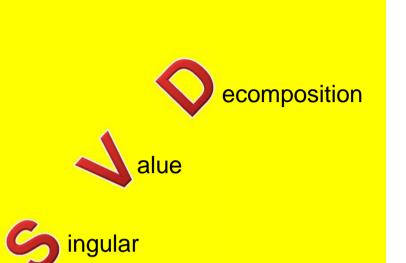
Southern Gaul, 1st cent BCE From the La Graufesenque workshop





What Spectra Look Like





The Swiss Army Knife of data mining A trick to find good coordinates!

What is SVD?

- What is the best way to look at data when there are n samples and m features measured ?
 - Consider an n x m matrix M. The SVD decomposition of this matrix writes the matrix as:

$$M_{ij} = U_{i\alpha} S_{\alpha} V_{\alpha j}^{tr}$$

• Where U is n x n

V is m x m

S is n x m and only has

non-vanishing stuff on diagonal

Data Compression

Consider a matrix M which is a picture The SVD decomposition lets us write M

as

$$M_{ij} = \sum_{\alpha=1}^{n} \lambda_{\alpha} T_{ij}^{\alpha}$$
$$\sum_{i=1}^{n} \sum_{j=1}^{m} M_{ij}^{2} = Tr(MM^{tr}) = \sum_{\alpha=1}^{\min(m, n)} \lambda_{\alpha}^{2}$$

 $\min(m, n)$

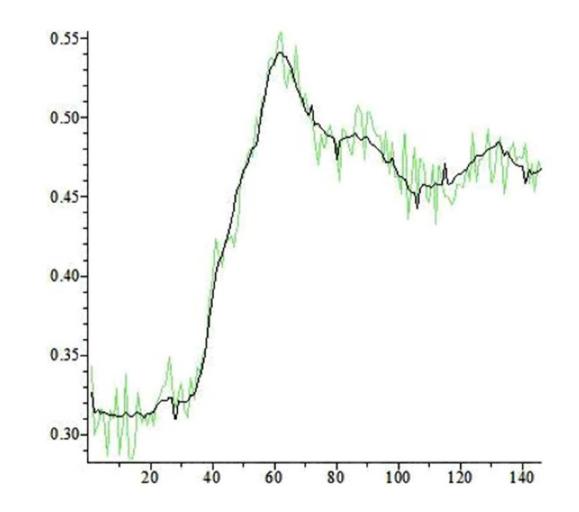
• Define
approximation:

$$Tr((M - \widetilde{M})^{+}(M - \widetilde{M})) = \sum_{\alpha=p}^{\min(m, n)} \lambda_{\alpha} T^{\alpha}$$

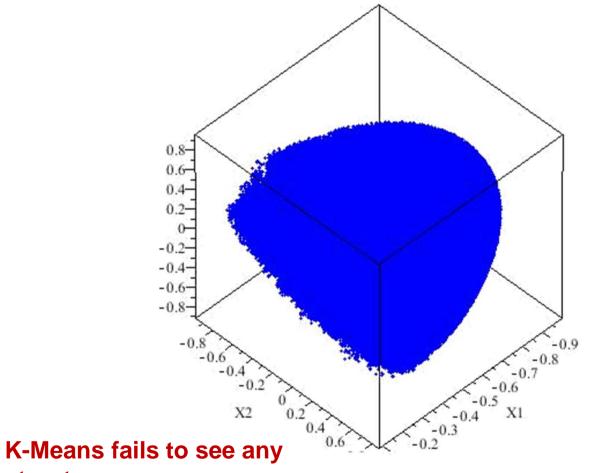
How well does this work ?

Any data matrix is a picture, or at least like a picture!

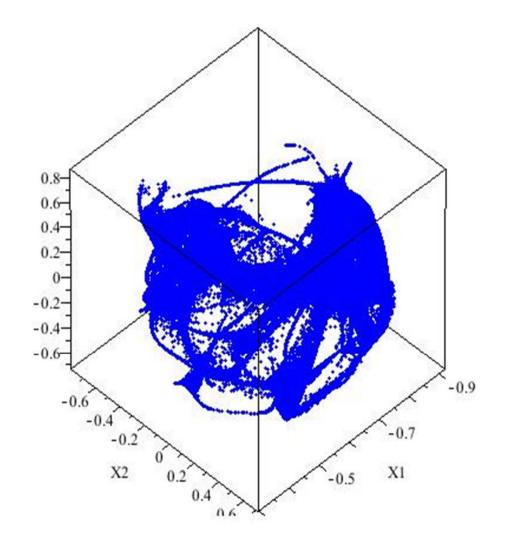
Sample Spectrum After SVD



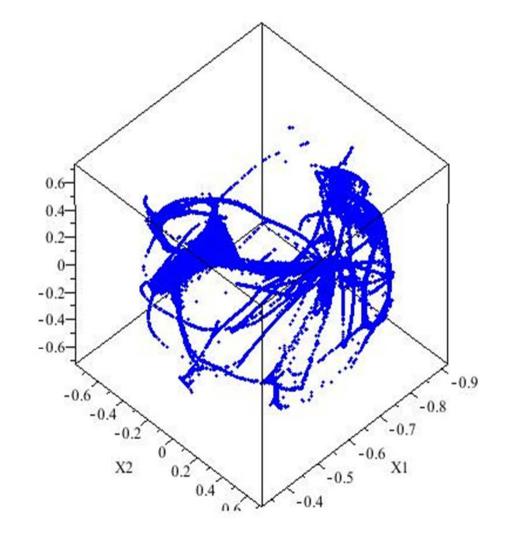
SVD Data At The Outset



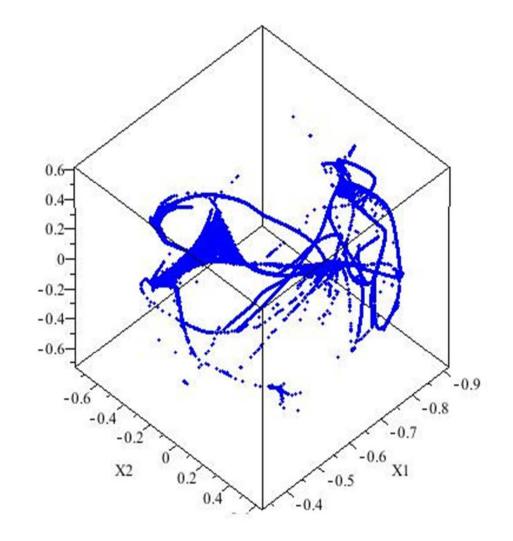
structure



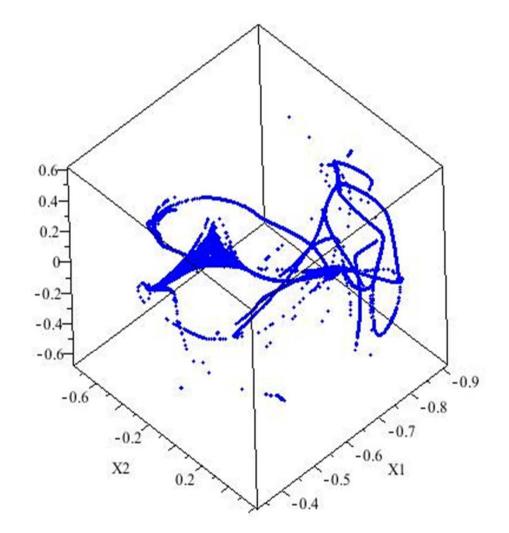
Data collapses into clumps and strands



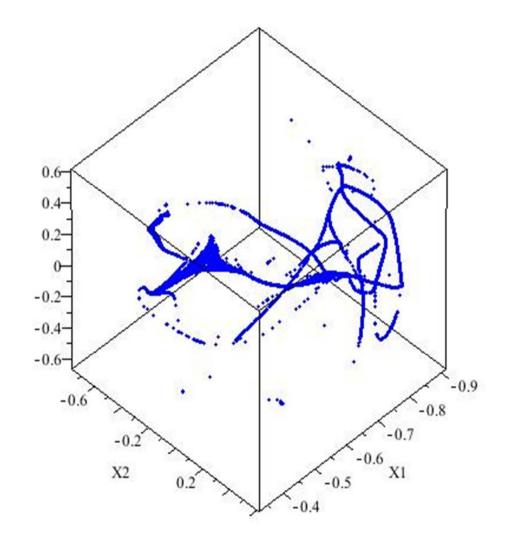
Data collapses into clumps and strands



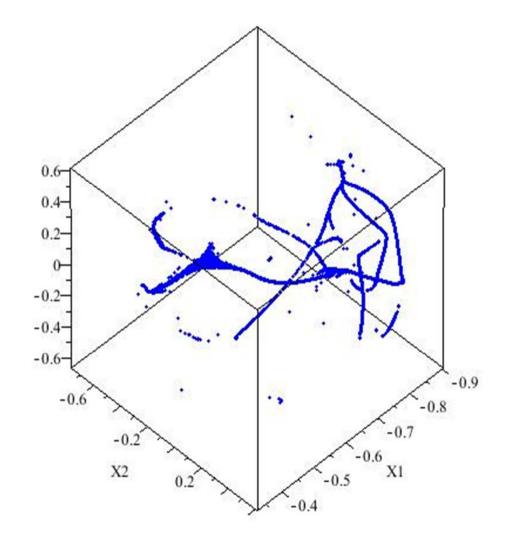
Some strands collapse to points, others remain



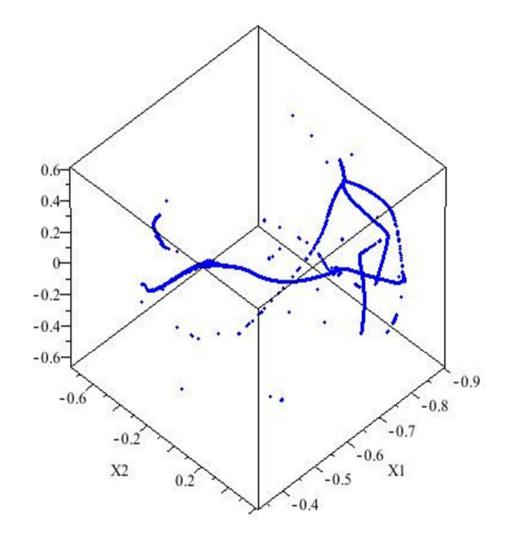
Some strands collapse to points, others remain



Separation continues

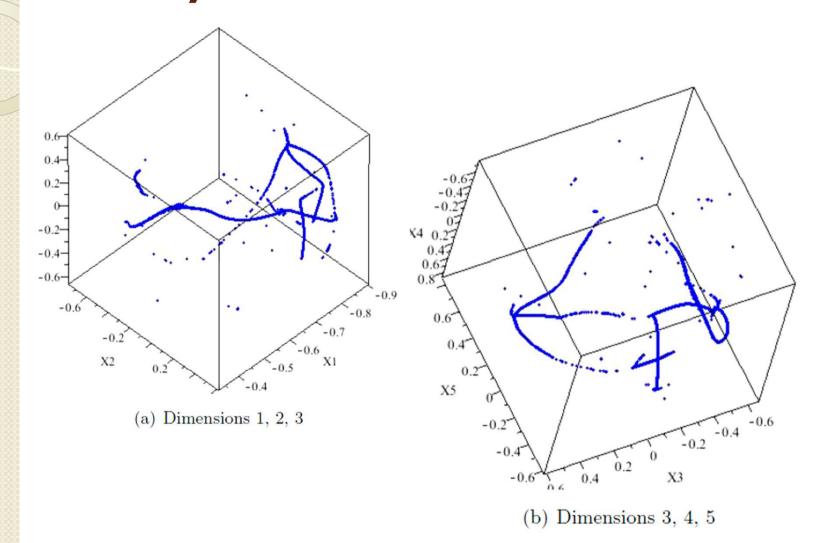


Separation continues

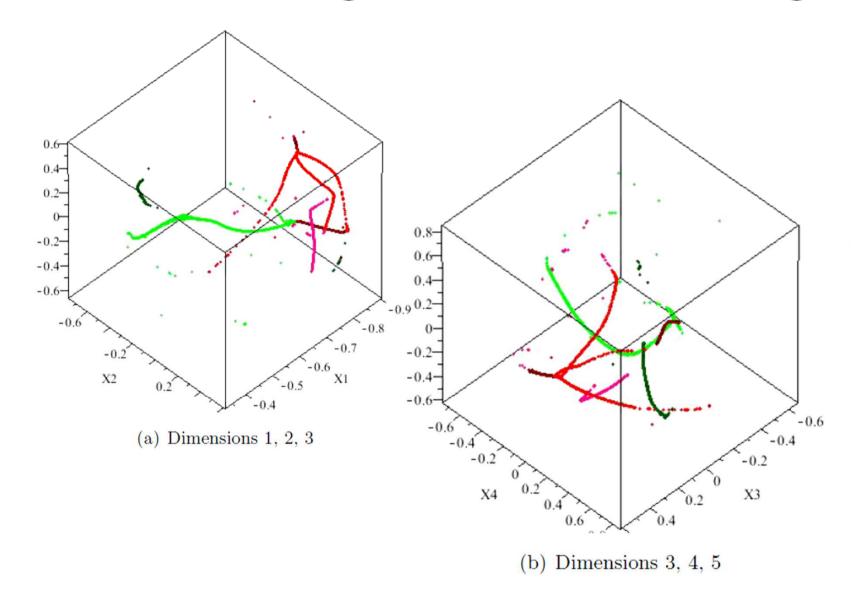


Separation continues

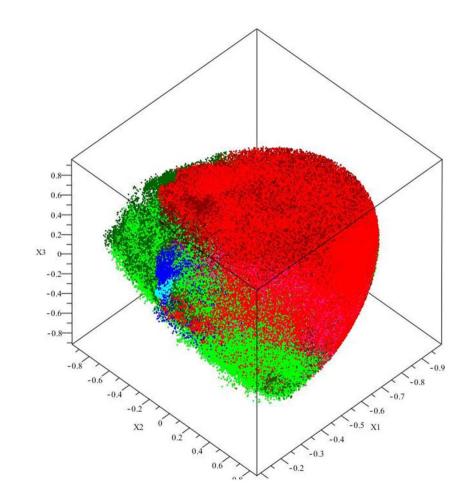
Finally The Clustered Data Looks Like

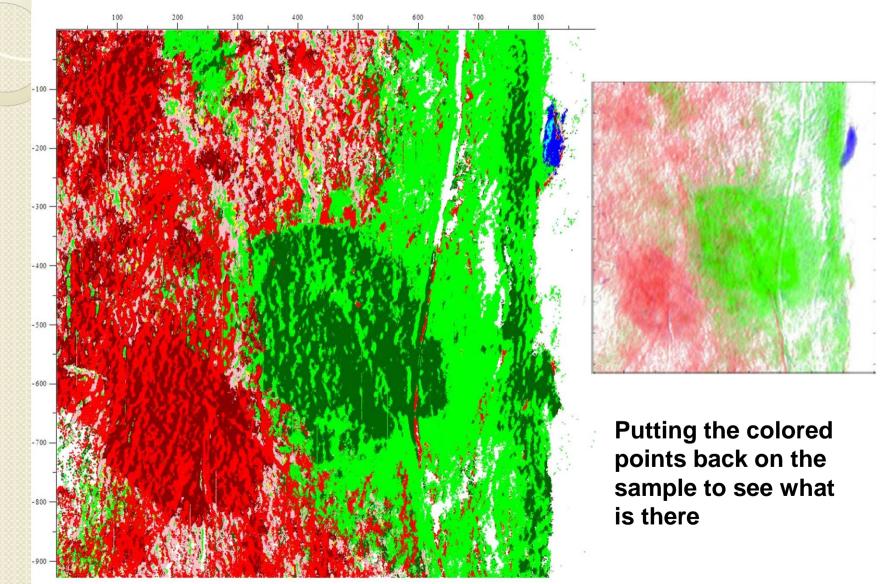


After Selecting Clusters and Coloring

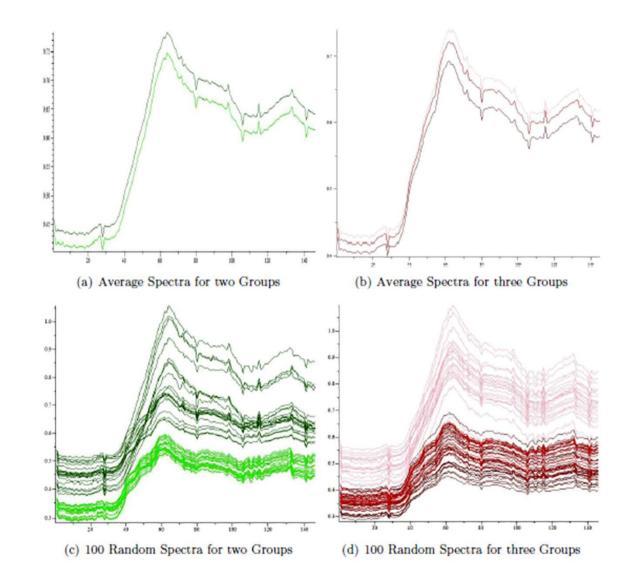


SVD Data At The End

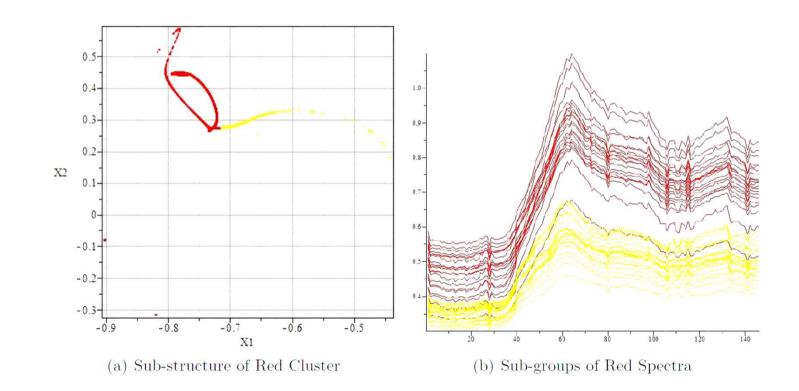


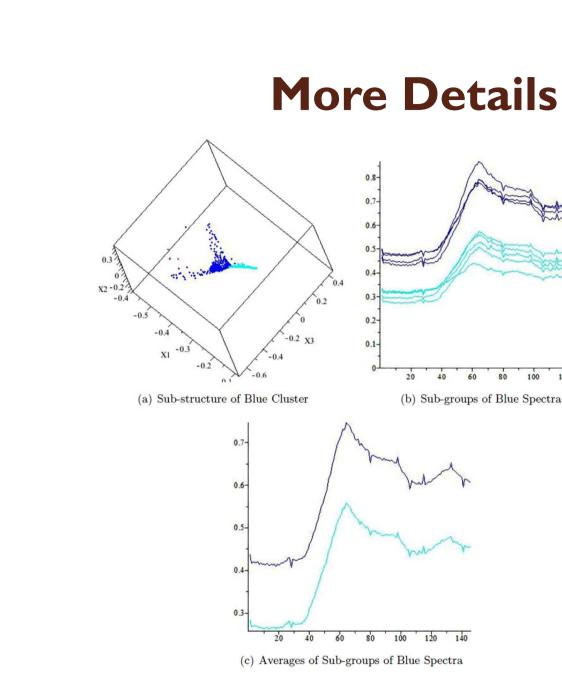


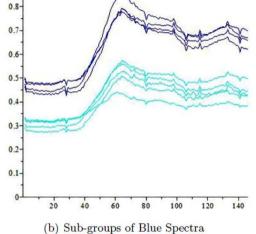
What Do Different Clusters Tell Us?

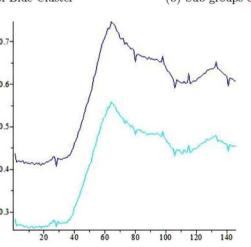


Finer Details









(c) Averages of Sub-groups of Blue Spectra

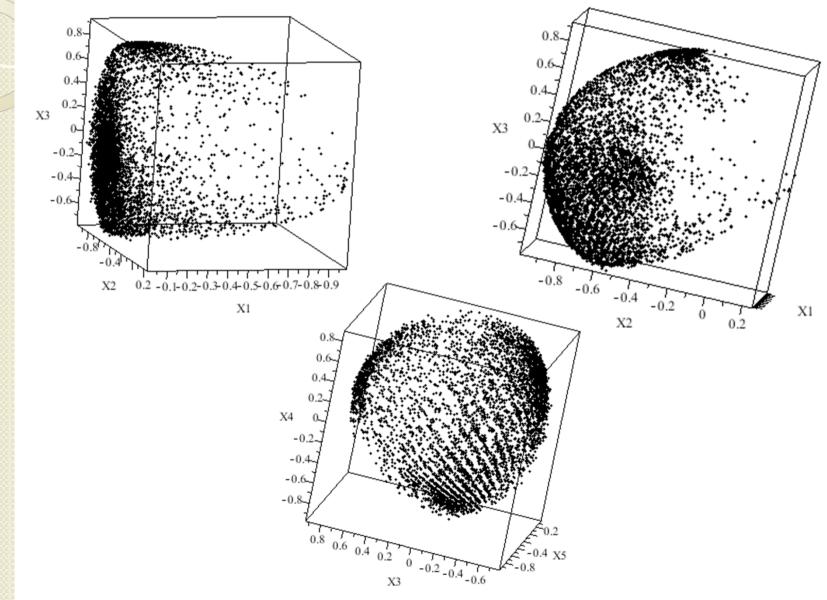
Lessons Learned

- Large data sets typically reveal structures that are more complicated than simple clusters
 - These extended structures have features (limbs, arms, reefs, archipelagos..?) that are significant and, in cases studied to date, reveal a lot about the data
 - While it is easy to extract eventual simple clusters algorithmically, the extended structures are better explored with our visual approach

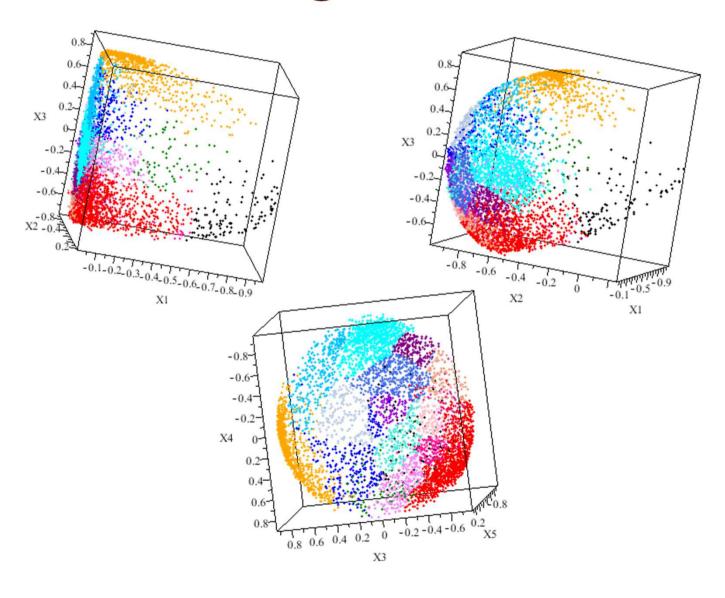
Earthquakes in the Middle East

- Five quantities are measured (they are extracted from the seismic data)
 - Md the magnitude of the earthquake
 - M0 the moment of the earthquake
 - Stress
 - Radius
 - **F0**

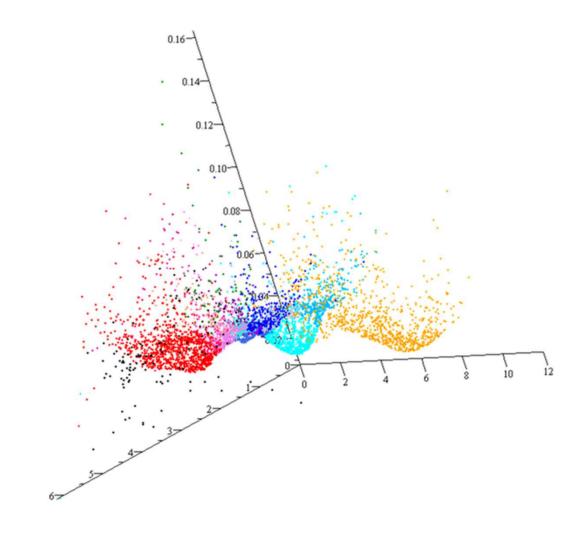
SVD of 5 Dimensional Data



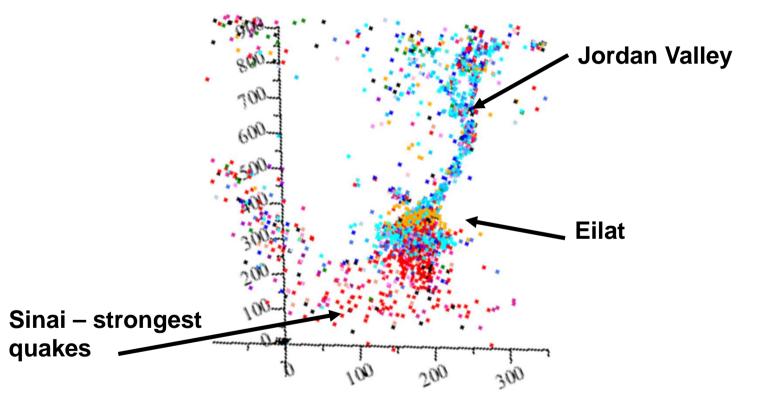
Coloring The Clusters



A 2-d Slice Of The Potential



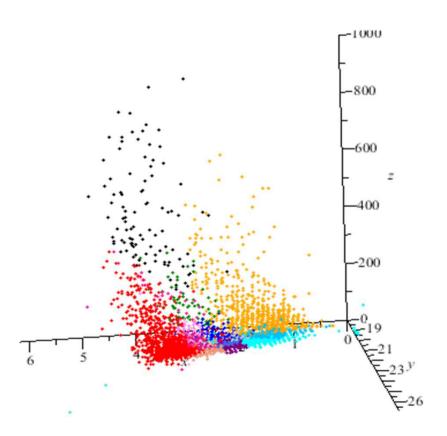
Putting It On A Map



The geophysicists didn't know about the gold and lighter blue regions

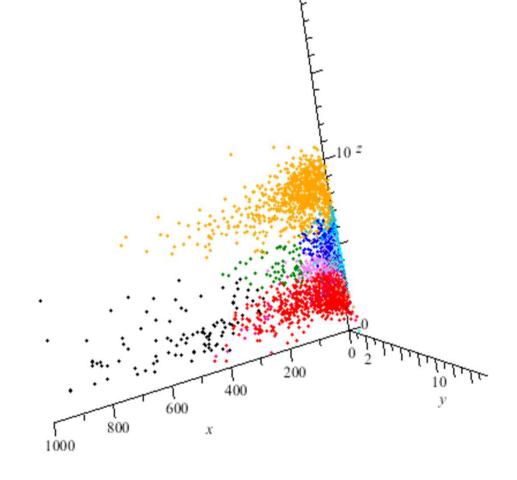
In The Original Coordinates

- Data isn't separable
 - Variables Md(x), M0(y), Stress(z)

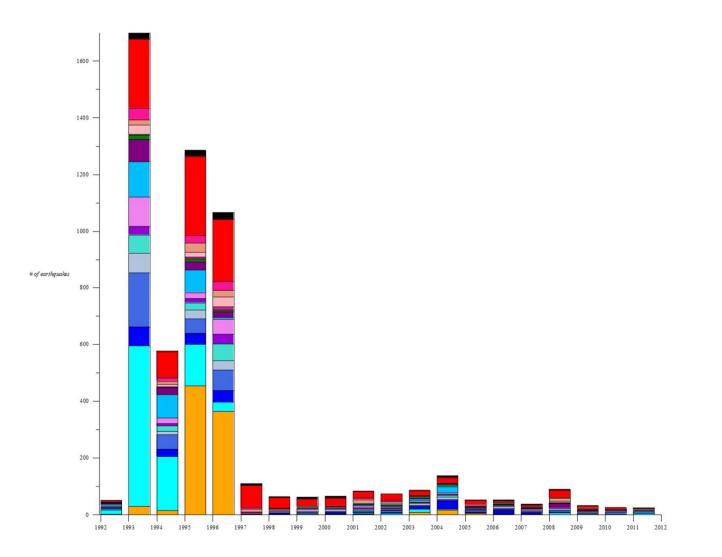


More Original Coordinates

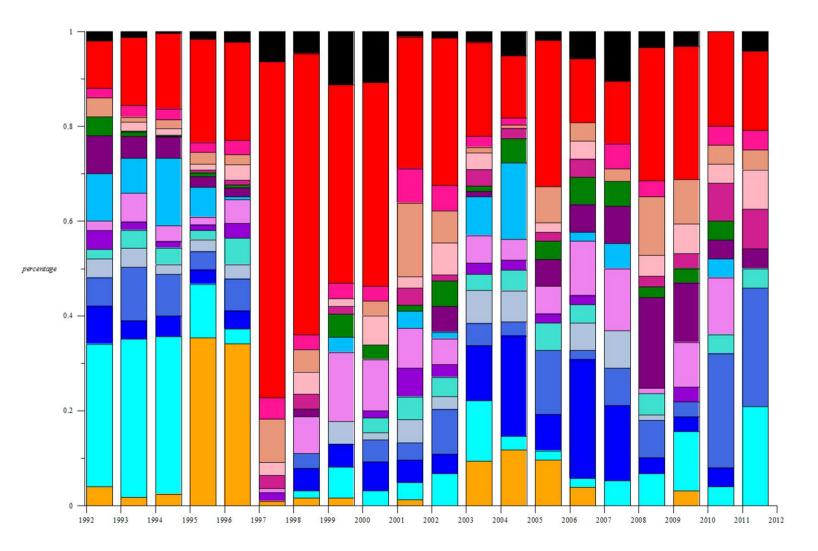
• Stress(x), radius(y), f0(z)



Earthquakes By Year And Cluster



Percentage of Cluster By Year



	Machine Learning	Hierarchical	Partitional e.g. k-means	Density Based	DQC
Assume number of cluster?	Hidden in choice of Training set	Number of clusters	Number of clusters	Sensitive to choice of 2 parameters	No One param low sensitivity to choice
Topological Structures	For SVC must assume many outliers	No	Νο	Somewhat	Yes
lf High Dimensional Data	?	Many small clusters	Many small clusters	?	Linear Cost in Compute Time
Visual	No	No	No	Not really	Yes
Extract Clusters	Algorithmic	Algorithmic	Algorithmic	Algorithmic	Visual + Algorithmic

Based on information in On Clustering Validation Techniques, *Maria Halkidi, Yannis Batistakis, Michalis Vazirgiannis,* Journal of Intelligent Information *Systems, 17:2/3, 107-145,2001*

Final Message

- All of the large, complex, data sets we have looked at exhibit complicated structures in addition to simple clusters
 - DQC can find these structures when other data mining methods fail
 - Every strand in these clusters is meaningful
 - Complex structures can be explored using the visual approach.
 - After we know what they mean we can extract them algorithmically.