Statistical Mechanics and Dynamics of Multicomponent Quantum Gases

Austen Lamacraft

October 26, 2011

Outline

Statistical Mechanics of Boson Pairs
Phase transitions and universality
Boson pair condensates
Interplay of strings and vortices

Dynamics of Spinor Condensates
Geometry of phase space
Mechanics of the Mexican hat
Connection to spinor condensates

Boson pairing and unusual criticality

- Yifei Shi, Austen Lamacraft and Paul Fendley
arXiv:1108.5744
- Also Andrew James and Austen Lamacraft

$$
\text { Phys. Rev. Lett. 106, } 140402 \text { (2011) }
$$

Outline

Statistical Mechanics of Boson Pairs
Phase transitions and universality
Boson pair condensates
Interplay of strings and vortices

Dynamics of Spinor Condensates
Geometry of phase space Mechanics of the Mexican hat
Connection to spinor condensates

Why study phase transitions?

Why study phase transitions?

Amazingly, there is a sense in which the two problems are the same.

Universality: pick your battles

- Forget phase diagram and focus on phase transitions
- Continuous transitions characterized by critical exponents
- $M \propto\left(T-T_{c}\right)^{\beta}, C \propto\left(T-T_{c}\right)^{-\alpha}$
- At $T=T_{c}$ correlation functions $\langle M(\mathbf{x}) M(\mathbf{y})\rangle=\frac{C}{|\mathbf{x}-\mathbf{y}|^{2 \Delta}}$
- Behavior is characteristic of scale invariance

From scale invariance to simple models

From scale invariance to simple models Studying simple models is a really good idea!

$$
\begin{array}{r}
\mathcal{Z}=\sum_{\{\sigma\}} e^{-\beta \mathcal{H}_{\text {lsing }}[\sigma]}, \quad \sigma_{i}= \pm 1 \\
\beta \mathcal{H}_{\text {lsing }}[\sigma]=-J \sum_{<i j>} \sigma_{i} \sigma_{j}
\end{array}
$$

Universality classes

Characterized by broken symmetry of order parameter ${ }^{1}$ e.g. XY model

$$
\beta \mathcal{H}_{\mathrm{XY}}[\theta]=-J \sum_{<i j>} \cos \left(\theta_{i}-\theta_{j}\right)
$$

[^0]
Examples of 3D universality classes

Ising class

- Liquid-gas, binary mixtures, uniaxial magnetic systems, micellization,...
- $C \propto\left(T-T_{c}\right)^{-0.11}$
- $\xi \propto\left(T-T_{c}\right)^{0.63}$

XY class

- Easy plane magnets, λ-transition in ${ }^{4} \mathrm{He}$, superconductors, BEC,...
- $C \propto\left(T-T_{c}\right)^{-0.01}$
- $\xi \propto\left(T-T_{c}\right)^{0.67}$

Examples of 3D universality classes

Ising class

- Liquid-gas, binary mixtures, uniaxial magnetic systems, micellization,...
- $C \propto\left(T-T_{c}\right)^{-0.11}$
- $\xi \propto\left(T-T_{c}\right)^{0.63}$

XY class

- Easy plane magnets, λ-transition in ${ }^{4} \mathrm{He}$, superconductors, BEC,...
- $C \propto\left(T-T_{c}\right)^{-0.01}$
- $\xi \propto\left(T-T_{c}\right)^{0.67}$

Beautiful classification...

Examples of 3D universality classes

Ising class

- Liquid-gas, binary mixtures, uniaxial magnetic systems, micellization,...
- $C \propto\left(T-T_{c}\right)^{-0.11}$
- $\xi \propto\left(T-T_{c}\right)^{0.63}$

XY class

- Easy plane magnets, λ-transition in ${ }^{4} \mathrm{He}$, superconductors, BEC,...
- $C \propto\left(T-T_{c}\right)^{-0.01}$
- $\xi \propto\left(T-T_{c}\right)^{0.67}$

Beautiful classification...
Let's try to break it!

Bose condensates and superfluids are XY systems

Bose condensation: macroscopic occupancy of single-particle state

- Wavefunction $\Psi(\mathbf{r})$ is condensate order parameter
- Free to choose phase: XY symmetry breaking
- Superfluid velocity $\mathbf{v}=\frac{\hbar}{m} \nabla \theta$

Vortices give a twist in 2D

Quantized vortices: phase increases by $2 \pi \times q(\operatorname{Integer} q)$

$$
\mathbf{v}=\frac{\hbar}{m} \nabla \theta=\frac{\hbar}{m} \frac{\hat{\mathbf{e}}_{\theta}}{r}
$$

Vortices give a twist in 2D

Logarithmic interaction between vortices of charge q_{1}, q_{2}

$$
V_{q_{1}, q_{2}}(\mathbf{x}-\mathbf{y})=-q_{1} q_{2} \frac{\pi n \hbar^{2}}{2 m} \ln |\mathbf{x}-\mathbf{y}|
$$

2D density n

The Kosterlitz-Thouless transition

Consider contribution to the partition function from a $q= \pm 1$ pair

$$
\begin{aligned}
\mathcal{Z}_{\text {pair }} & =\int d \mathbf{x} d \mathbf{y} \exp \left[-\beta V_{1,-1}(\mathbf{x}-\mathbf{y})\right] \\
& =\int \frac{d \mathbf{x} d \mathbf{y}}{|\mathbf{x}-\mathbf{y}|^{\frac{\beta \pi n \hbar^{2}}{2 m}}}
\end{aligned}
$$

Pair found at separation r with probability $\propto r^{1-\frac{\beta \pi n \hbar^{2}}{2 m}}$

- Pair dissociates for

$$
k_{\mathrm{B}} T>k_{\mathrm{B}} T_{\mathrm{K} T} \equiv \frac{\pi n \hbar^{2}}{2 m}
$$

- Pair bound for

$$
T<T_{\mathrm{KT}}
$$

Outline

Statistical Mechanics of Boson Pairs
Phase transitions and universality

Boson pair condensates

Interplay of strings and vortices

Dynamics of Spinor Condensates
Geometry of phase space Mechanics of the Mexican hat
Connection to spinor condensates

Pair condensates: an Ising transition in an XY system

Two Bose condensates with a definite phase

$$
|\Delta \theta\rangle=\sum_{n=0}^{N} e^{i n \Delta \theta}|n\rangle_{L}|N-n\rangle_{R}
$$

Detect phase by interference

Pair condensates: an Ising transition in an XY system
Take a condensate of molecules and split it

Pair condensates: an Ising transition in an XY system Dissociate pairs

$$
\downarrow \quad \downarrow
$$

Pair condensates: an Ising transition in an XY system
What is the resulting state?

Superposition involves only even numbers of atoms

$$
\begin{aligned}
\sum_{n=0}^{N / 2}|2 n\rangle_{L}|N-2 n\rangle_{R} & =\frac{1}{2} \sum_{n=0}^{N}|n\rangle_{L}|N-n\rangle_{R}+\frac{1}{2} \sum_{n=0}^{N}(-1)^{N}|n\rangle_{L}|N-n\rangle_{R} \\
& =|\Delta \theta=0\rangle+|\Delta \theta=\pi\rangle
\end{aligned}
$$

Pair condensates: an Ising transition in an XY system

Pair condensate \longrightarrow condensate breaks an Ising symmetry! ${ }^{2}$
${ }^{2}$ Romans et al (2004), Radzihovsky et al. (2004)

A simple model

$$
H_{\mathrm{GXY}}=-\sum_{\langle i j\rangle}\left[(1-\Delta) \cos \left(\theta_{i}-\theta_{j}\right)+\Delta \cos \left(2 \theta_{i}-2 \theta_{j}\right)\right]
$$

Korshunov (1985), Lee \& Grinstein (1985)

- $\Delta=0$ is usual $\mathrm{XY} ; \Delta=1$ is π-periodic XY
- $\Delta<1$ has metastable minimum

Schematic phase diagram

What is the nature of phase transition along dotted line?

An old problem with many guises

Korshunov (1985) Lee \& Grinstein (1985) Sluckin \& Ziman (1988) Carpenter \& Chalker (1989) Romans et al (2004) Radzihovsky et al. (2004) Geng \& Selinger (2009) James \& AL (2011)
Ejima et al. (2011)

Outline

Statistical Mechanics of Boson Pairs
Phase transitions and universality
Boson pair condensates
Interplay of strings and vortices

Dynamics of Spinor Condensates
Geometry of phase space Mechanics of the Mexican hat
Connection to spinor condensates

How things change on the Ising critical line

Redo KT argument accounting for string

Domain wall terminates at disorder operator $\mu(\mathbf{x})$

How things change on the Ising critical line

Disorder operators dual to $\sigma(\mathbf{x})$ of Ising model

$$
\begin{aligned}
& \langle\sigma(\mathbf{x}) \sigma(\mathbf{y})\rangle=\langle\mu(\mathbf{x}) \mu(\mathbf{y})\rangle=\frac{1}{|\mathbf{x}-\mathbf{y}|^{1 / 4}} \\
\mathcal{Z}_{\text {pair }}= & \int d \mathbf{x} d \mathbf{y}\langle\mu(\mathbf{x}) \mu(\mathbf{y})\rangle \exp \left[-\beta V_{1 / 2,-1 / 2}(\mathbf{x}-\mathbf{y})\right] \\
= & \int \frac{d \mathbf{x} d \mathbf{y}}{|\mathbf{x}-\mathbf{y}|^{\frac{1}{4}+\frac{\beta \pi n \hbar^{2}}{8 m}}}
\end{aligned}
$$

Dissociation at higher temperatures than for 'free' half vortices

How things change on the Ising critical line

Numerical simulation using worm algorithm

$$
\mathcal{Z}=\prod_{c} \int_{-\pi}^{\pi} \frac{d \theta_{c}}{2 \pi} \prod_{\langle a b\rangle} w\left(\theta_{a}-\theta_{b}\right),
$$

$w(\theta)$ is written in terms of the Villain potential $w_{V}(\theta)$

$$
\begin{aligned}
& w(\theta) \equiv w_{V}(\theta)+e^{-K} w_{V}(\theta-\pi) \\
& w_{V}(\theta) \equiv \sum_{p=-\infty}^{\infty} e^{-\frac{J}{2}(\theta+2 \pi p)^{2}} \propto \sum_{n=-\infty}^{\infty} e^{i n \theta} e^{-\frac{\mu_{2} n^{2}}{2}} \\
& V\left(\theta_{i \mathrm{ij}}\right)
\end{aligned}
$$

Numerical simulation using worm algorithm

Boson pairing and unusual criticality: summary

- We found an Ising transition where you'd expect an XY (KT) transition!

- The same phenomenon in 3D would be truly remarkable (true long-range XY order developing at an Ising transition)

Spin 1 microcondensates

AL, Phys. Rev. A 83, 033605 (2011)

Manifesto

- The order parameter of a BEC is a macroscopic variable
- For a BEC with spin, it should be some kind of pendulum

Outline

Statistical Mechanics of Boson Pairs
Phase transitions and universality
Boson pair condensates
Interplay of strings and vortices

Dynamics of Spinor Condensates
Geometry of phase space
Mechanics of the Mexican hat
Connection to spinor condensates

A very simple system

Periodic boundary conditions $=$ motion on a torus
Quasiperiodicity: asteroid always hits spaceship!

Description of phase space

Phase space is a product $T^{2} \times \mathbb{R}^{2}$

Action angle variables

Hamilton's equations for $H=E\left(p_{1}, p_{2}\right)$

$$
\begin{aligned}
& \dot{x}_{1}=\frac{\partial H}{\partial p_{1}}=v_{1} \\
& \dot{x}_{2}=\frac{\partial H}{\partial p_{2}}=v_{2}
\end{aligned}
$$

$\theta_{i}=\frac{2 \pi x_{i}}{L_{i}}$ are angles on the torus obeying

$$
\theta_{i}=\frac{2 \pi v_{i}}{L_{i}} t+\text { const }_{i}
$$

Simplest example of action ($p_{1} L_{1}, p_{2} L_{2}$) angle $\left(\theta_{1}, \theta_{2}\right)$ variables

Quantizing the system

Other choices are possible

$$
a\left(p_{1} L_{1}\right)+b\left(p_{2} L_{2}\right) \quad a, b \in \mathbb{Z}
$$

$(1,0)$
$(0,1)$
$(1,1)$

Different actions $=$ different unit cells

$$
\binom{I_{1}}{I_{2}}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\binom{p_{1} L_{1}}{p_{2} L_{2}}
$$

$\begin{array}{cccccc}P_{2} L_{2} \\ 2 h & 2 h & 3 h & 4 h & 5 h & 6 h C_{1} \\ 2 h & P_{1} L_{1}\end{array}$

Outline

Statistical Mechanics of Boson Pairs
Phase transitions and universality
Boson pair condensates
Interplay of strings and vortices

Dynamics of Spinor Condensates
Geometry of phase space
Mechanics of the Mexican hat
Connection to spinor condensates

The Mexican hat

Consider the Hamiltonian for two dimensional motion

$$
H=\frac{\mathbf{p}^{2}}{2}-\frac{\mathbf{r}^{2}}{2}+\mathbf{r}^{4}
$$

A natural approach - separate angular motion

$$
\begin{gathered}
H=\frac{\mathbf{p}^{2}}{2}-\frac{\mathbf{r}^{2}}{2}+\mathbf{r}^{4} \\
=\frac{p_{r}^{2}}{2}+\frac{\ell^{2}}{2 r^{2}}-\frac{r^{2}}{2}+r^{4} \\
\ell=x p_{y}-y p_{x} \quad p_{r}=\frac{p_{x} x+p_{y} y}{r}
\end{gathered}
$$

Defines potential for radial motion $V(r)=\frac{\ell^{2}}{2 r^{2}}-\frac{r^{2}}{2}+r^{4}$

Phase plane for reduced motion

Phase space of integrable systems

This is an integrable system:

- 2 degrees of freedom and two integrals of motion (energy E, angular momentum ℓ). Motion lies on two dimension submanifold of four dimensional phase space.
- Closed trajectories for reduced motion in (r, p_{r}) plane, and angle θ in the (real) plane is cyclic coordinate

$$
\begin{gathered}
\dot{p}_{\theta}=0 \longrightarrow p_{\theta}=\ell, \text { const } \\
\dot{\theta}=-\frac{\partial H}{\partial \ell}=-\frac{\ell}{r^{2}}
\end{gathered}
$$

(Note that θ motion is not trivial)

- The motion at fixed (E, ℓ) lies on a torus.

Motion on the torus

$$
H_{\text {radial }}=\frac{p_{r}^{2}}{2}+\frac{\ell^{2}}{2 r^{2}}-\frac{r^{2}}{2}+r^{4}
$$

Motion on the torus

Quasiperiodic motion

Action angle variables, and the Liouville-Arnold theorem

Liouville-Arnold theorem

- For a system integrable in the above sense, can find N conjugate pairs of action-angle variables (I_{i}, ϕ_{i}), such that evolution of angles is trivial $\phi_{i}=\omega t+\phi_{i, 0} \dot{\phi}_{i}=\frac{\partial H}{\partial I_{i}}$
- Submanifold of phase space at fixed $\left\{I_{i}\right\}$ is N-Torus T^{N}

At a pinch...

In the (ℓ, E) plane, there is a special point $(0,0)$ where torus pinches

At a pinch...

In the (ℓ, E) plane, there is a special point $(0,0)$ where torus pinches

Rotation angle in the Mexican hat

Rotation angle

Hamiltonian monodromy in a nutshell

Rotation angle increases by 2π as we circle the pinched torus

Some history

- 1673 Huygens finds period of spherical pendulum (20 years before Newton!)
- Classical mechanics: Newton, Euler, Hamilton ...
- 1980 Duistermaat discovers Hamiltonian monodromy, with the spherical pendulum a prominent example.
- 1988 Cushman and Duistermaat discuss signatures in quantum mechanics (no time today...)
- 1997 Molecular physicists become interested. Candidate systems are flexible triatomic molecules HAB, such as HCN, $\mathrm{HCP}, \mathrm{HClO}$.

From another cold atom lab...

Experimental Demonstration of Classical Hamiltonian Monodromy in the 1:1:2 Resonant Elastic Pendulum

N. J. Fitch, ${ }^{1}$ C. A. Weidner, ${ }^{1}$ L. P. Parazzoli, ${ }^{1}$ H. R. Dullin, ${ }^{2}$ and H. J. Lewandowski ${ }^{1}$
${ }^{1}$ JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440
${ }^{2}$ School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
(Received 7 April 2009; published 15 July 2009)

Outline

Statistical Mechanics of Boson Pairs
Phase transitions and universality
Boson pair condensates
Interplay of strings and vortices

Dynamics of Spinor Condensates
Geometry of phase space
Mechanics of the Mexican hat
Connection to spinor condensates

Spin 1 Bose condensates

Bose condensation: macroscopic occupancy of single-particle state

Spin 1 Bose condensates

Bose condensation: macroscopic occupancy of single-particle state

Q: But what if Bosons have spin?

Spin 1 Bose condensates

Bose condensation: macroscopic occupancy of single-particle state

Q: But what if Bosons have spin?
A: Macroscopic occupancy and interaction of different states

Spin 1 Bose condensates

Bose condensation: macroscopic occupancy of single-particle state

Q: But what if Bosons have spin?
A: Macroscopic occupancy and interaction of different states

Bosons just oscillator quanta Macroscopic occupancy \Longrightarrow Oscillators are (close to) classical

Spin-1 gas in the single mode approximation

$$
\begin{aligned}
& H_{\text {SMA }}=\frac{c_{0}}{2 V}: \mathcal{N}^{2}:+\frac{c_{2}}{2 V}: \mathcal{S} \cdot \mathcal{S}:+H_{\mathrm{Z}} \\
& \mathcal{N}=\sum_{m=-1}^{1} a_{m}^{*} a_{m} \quad \mathcal{S}=\sum_{m, m^{\prime}} a_{m}^{*} \mathbf{S}_{m m^{\prime}} a_{m^{\prime}}
\end{aligned}
$$

$\mathbf{S}_{m n}$ spin- 1 matrices, and $H_{z}=\sum_{m} a_{m}^{*}\left[p m+q m^{2}\right] a_{m}$

$$
\begin{array}{r}
h \equiv \frac{1}{2 N^{2}}\left[\mathcal{S}_{z}^{2}+2\left(a_{1}^{*} a_{-1}^{*}\left(a_{0}\right)^{2}+\left(a_{0}^{*}\right)^{2} a_{1} a_{-1}\right)+2 a_{0}^{*} a_{0}\left(a_{1}^{*} a_{1}+a_{-1}^{*} a_{-1}\right)\right] \\
+\frac{\tilde{q}}{N}\left[a_{1}^{*} a_{1}+a_{-1}^{*} a_{-1}\right] .
\end{array}
$$

$\tilde{q}=q / c_{2} n . h$ is energy per particle in units of $c_{2} n$

Classical mechanics of the spin-1 gas

$h \equiv \frac{1}{2 N^{2}}\left[\mathcal{S}_{z}^{2}+2\left(a_{1}^{*} a_{-1}^{*}\left(a_{0}\right)^{2}+\left(a_{0}^{*}\right)^{2} a_{1} a_{-1}\right)+2 a_{0}^{*} a_{0}\left(a_{1}^{*} a_{1}+a_{-1}^{*} a_{-1}\right)\right]$

$$
+\frac{\tilde{q}}{N}\left[a_{1}^{*} a_{1}+a_{-1}^{*} a_{-1}\right]
$$

Classical mechanics of the spin-1 gas

There are three conserved quantities

1. The energy $N h$
2. The angular momentum \mathcal{S}^{z}
3. The particle number \mathcal{N}

For a range of parameters this systems displays monodromy!

Single mode dynamics in experiment

Chapman group (GA Tech) with ${ }^{87} \mathrm{Rb}$ (2005) Also Lett group (NIST) with ${ }^{23} \mathrm{Na}$ (2007)

Rotation angle in spinor condensates

Monitor evolution of perpendicular magnetization

Can be measured by Faraday rotation spectroscopy

Summary

In multicomponent quantum gases find unusual phase transitions

> Yifei Shi, AL \& Paul Fendley arXiv:1108.5744 Andrew James \& AL PRL 106, 140402 (2011)
...and unusual dynamics
AL, Phys. Rev. A 83, 033605 (2011)

[^0]: ${ }^{1}$ Also spatial dimension

