

# Atom interferometer analog of the double slit experiment

#### F.A. Narducci Naval Air Systems Command

S. A. DeSavage<sup>1</sup>, J.P. Davis<sup>2</sup> C. L. Adler<sup>3</sup>

Discussions with M. Larsen (Northrop Grumman)

Naval Air Systems Command, Patuxent River, Md
 Aerospace Mass Properties Analysis, Inc., North Wales, Pa
 St. Mary's College of Maryland, St. Mary's City, Md.

\$\$\$\$\$\$\$\$ \$ PMA264\$ \$ ONR \$ \$ Sec. 219 \$ \$\$\$\$\$\$\$\$







- Motivation-Gradiometers for Navy applications
- •Atom interferometers (for magnetic field

measurements)

 Making the atom beam-splitter: Raman transitions in real atoms in arbitrary magnetic fields

Interferometer Experiments ....



# Outline-Interferometer Experiments AIR

#### •Single Pulse

- Time Domain
- Frequency Domain
- Double Pulse
  - Time Domain
  - Frequency Domain
- Triple Pulse
   Time Domain
   Frequency Domain
- Outlook





#### Airborne Magnetic Noises





# Gradiometer (Reference sensor) NAV SAIR





# Gradiometer (Reference sensor) NAV AIR

#### Fluctuations are all geomagnetic noise!





#### Gradiometer (Reference sensor) NAV IR





## Technical Overview of Al sensors AV MAIR



#### We have shown...



#### A proposal for a gradient magnetometer atom interferometer

J.P. Davis and F.A. Narducci\*

Journal of Modern Optics Vol. 55, Nos. 19–20, 10–20 November 2008, 3173–3185

For uniform B field

 $\Delta \phi = 0$ 



#### An inherent gradiometer

- For gradient B-field  $\Delta\phi=-k_{eff}\left(g\left(+\frac{\mu}{m}\frac{dB}{dz}\right)T^{2}\right)$ 



# State-space interferometer NAV MAIR



<sup>35</sup>Co-propagating Raman beams for Doppler-free, acceleration free configuration <sup>35</sup>Coherent superposition of magnetic sublevels

Same picture allows us to see how this runs as a magnetometer (possibly with stationary atoms)



#### Raman Resonances







# Raman resonances in arbitrary fields



#### A real atom: <sup>85</sup>Rb





#### **Experimental Arrangement**



NAV

R











# Timing sequence

UVa





Raman Spectra-Arbitrary Field NAV AIR



# **Selection Rules**



"Even" transitions driven by

- x-y polarization
  - -- ĠĤ-- Ĥ polarizations

àm=0

"Odd" transitions driven by

|àm|=1

- Here, z is defined by the direction of the magnetic field
- g factor between ground states changes sign



### Six Peaked Spectrum





#### **Five Peaked Spectrum**



AVA



#### Double Pulse Experiment (Ramsey) Time Domain











# Timing sequence

UVa





# Rabi cycling: 0 peak (Expt.)

0 peak: Case 1

NAV

R



# A little math...



$$\left|c_{2}(t_{1}+T+t_{2})\right|^{2} = \left|2\frac{\Omega_{+}}{\Omega^{*}}\left[\frac{\Omega^{*}}{2\Omega_{g}}\tilde{c}_{2}(t_{1})e^{i\delta(t_{1}+T)} - \frac{\Omega_{-}}{\Omega_{g}}\tilde{c}_{1}(t_{1})\right]e^{i\Omega_{+}t_{2}}\right|$$

$$+2\frac{\Omega_{-}}{\Omega^{*}}\left[\frac{\Omega_{+}}{\Omega^{*}}\tilde{c}_{1}(t_{1})-\frac{\Omega^{*}}{2\Omega_{g}}\tilde{c}_{2}(t_{1})e^{-\imath\delta(t_{1}+T)}\right]e^{\imath\Omega_{-}t_{2}}\Big|^{2}$$

$$\Omega_{\pm} = \frac{1}{2} \left( \delta \pm \Omega_g \right) \qquad \qquad \Omega_g = \sqrt{\left| \Omega \right|^2 + \delta^2}$$

Picture two lasers beating against each other where here the Raman fields plays the role of the first laser and the atomic ground state transition plays the role of the second laser.



# Timing sequence

UVa





### f=1.517862 GHz





#### T=delay time between pulses



## f=1.517863 GHz





T=delay time between pulses

## f=1.517864 GHz





## f=1.517865 GHz





### f=1.517866 GHz





#### T=delay time between pulses



## f=1.517867 GHz





#### T=delay time between pulses

## f=1.517868 GHz





#### T=delay time between pulses







#### T=delay time between pulses



## f=1.517870 GHz



| 0.3  | <b>[</b>              | I               | I                                                                                                        | I                              | I                   | I                             | I                       | I                      |                    |
|------|-----------------------|-----------------|----------------------------------------------------------------------------------------------------------|--------------------------------|---------------------|-------------------------------|-------------------------|------------------------|--------------------|
| 0.28 | -                     | *               |                                                                                                          | ₩                              | * * *               |                               |                         |                        | -                  |
| 0.26 | *<br>**<br>***        | **<br>*         | * * * * * * * * * * * * * * * * * * *                                                                    | ╨<br>╡╋╴╴╴<br>╪╫╫┿<br>┶╶╫┿╴╴╺╛ | ***<br>***<br>***   | *<br>*<br>*                   | *                       | *<br>* <b>*</b>        | *<br>* -           |
| 0.24 | ****<br>* *<br>* *    | *#*<br>**<br>** | IN         *           IN         *           IN         *           IN         *           IN         * | ·* *<br>** *<br>* *            | ***<br>← **<br>← ** | ₩₩*<br>╋ <del>*╋</del><br>* ╋ | **<br>****              | **<br>***<br>***       | ***<br>***<br>**** |
| 0.22 | ** **<br>* **<br>* ** | * *<br>*<br>* * | * * *                                                                                                    | * *<br>* *<br>* *              | * * *               | * **<br>* *<br>* *            | *****<br>*****<br>** ** | ****<br>****<br>*<br>* | ***<br>***<br>**   |
| 0.2  | * *<br>*<br>- *<br>*  | * *             | * * *                                                                                                    | * *<br>* *<br>* *              | * *<br>* *<br>* *   | * *<br>*<br>*                 | ** *<br>** *<br>* *     | ** *<br>* *<br>* *     | *<br>*<br>*        |
| ).18 | *<br>*<br>*           | **              | **                                                                                                       | * **                           | *<br>**<br>**       | **                            | * *<br>#*<br>* *<br>* * | * *<br>*<br>*<br>*     | +<br>** -<br>*₩    |
| 0.16 | <u>ም</u>              | ****            | **                                                                                                       |                                | ***                 | *                             | ₩ <mark>* *</mark>      |                        | ₩<br>₩<br>* _      |
|      | 0                     | 100             | 200                                                                                                      | 300                            | 400                 | 500                           | 600                     | 700                    | 8 0                |
|      |                       |                 |                                                                                                          | T                              | ime (used           | ; )                           |                         |                        |                    |

T=delay time between pulses




## Rabi Cycling: +1 Peak (Expt.) NAV AIR



## Double Pulse on magnetic transition SAIR











#### Double Pulse Experiment (Ramsey) Frequency Domain

-41-

## Timing sequence

UVa





## Inspiration from optics/clocksNAV AV



http://en.wikipedia.org/wiki/Double-slit\_experiment



## **Intensity profile**



















Nov 12, 2012







Nov 12, 2012



#### Triple Pulse Experiment Time Domain

















#### Triple Pulse Experiment Frequency Domain













## **Evidence of gradiometer**





Nov 12, 2012

#### Similar Bfield – changing spatial gradientNAV R



Nov 12, 2012

## Just for fun.....







- Systematic measurement of output vs.
  - Magnetic field
  - Gradient magnetic field
- Atom fountain arrangement
- Sensitivity



## **Optical pumping**









## Conclusions

- Single Pulse
  - Time Domain
  - Frequency Domain
- Double Pulse
  - Time Domain
  - Frequency Domain
- Triple Pulse
  Time Domain
  - Frequency Domain

#### Single Slit

#### Double Slit

#### "Demonstration" of a gradient magnetometer atom interferometer





## **Questions?**



### Noises



Gradiometers can remove distant noise



# Technical Overview of Al sensors average $|c_{e,p+\hbar k}(2T+\tau)|^2 = \frac{1}{2}[1 - \cos(\Delta \phi - \delta \tau/2)]$



## State-space interferometer NAV



$$\Delta \phi = \frac{\Delta S}{\hbar} = \frac{\mu_B}{\hbar} \left( g_{F'} m_{F'} - g_F m_F \right) \left( \frac{\partial B}{\partial z} \right) v_o T^2$$
$$= \frac{\mu_B}{\hbar} \left( g_{F'} m_{F'} - g_F m_F \right) \left( \frac{\partial B}{\partial z} \right) \frac{\Delta z}{2} T$$

 Co-propagating Raman beams for Doppler-free, acceleration free configuration
 Coherent superposition

•Coherent superposition of magnetic sublevels

Same picture allows us to see how this runs as a magnetometer (possibly with stationary atoms)



## Components for the atom optics NAV MAIR



## Raman Transfer (3-level atom) NAV MAIR





## **Atom Beamsplitter**





Nov 12, 2012

### Raman Spectra-Arbitrary Field NAV AIR









## Rabi cycling: 0 peak (Expt.)

0 peak: Case 1

NAV

R



## Rabi Cycling: +1 Peak (Expt.)

+1 transition: Case 2

R

NAV












#### Triple Pulse Experiment Time Domain







UVa Nov 12, 2012



### Similar Bfield – changing spatial gradientNAV AV



Nov 12, 2012



#### Backups





## **Experimental Arrangement**





NAV

R

# •Two level atom reminder



NAV

R

## Square vs Gaussian Pulses





UVa



