

Quantum-wire cluster states in the quantum optical frequency comb

Moran Chen 4th year department seminar

Adviser: Prof. Olivier Pfister

OUTLINE

- Background
 Quantum computer with Qbits and Qmodes
 Cluster states definition
 Optical Parametric Oscillator (OPO)

Quantum wire cluster states -tion - Experimental Setup - Experimental Progress

- How to get quantum wire from OPO

Quantum Computer

Classical Computer Classical Bit: either 0 or 1

Quantum Computer Qbit (Qubit): either 0 or 1, or a *superposition of both*

 $|\varphi > = \alpha |0 > +\beta |1 > (|\alpha|^2 + |\beta|^2 = 1)$

A quantum computer with n qbits can be in an arbitrary superposition of up to 2^n different states simultaneously, while a classical computer can only be in one of these state at any one time.

Quantum Computer

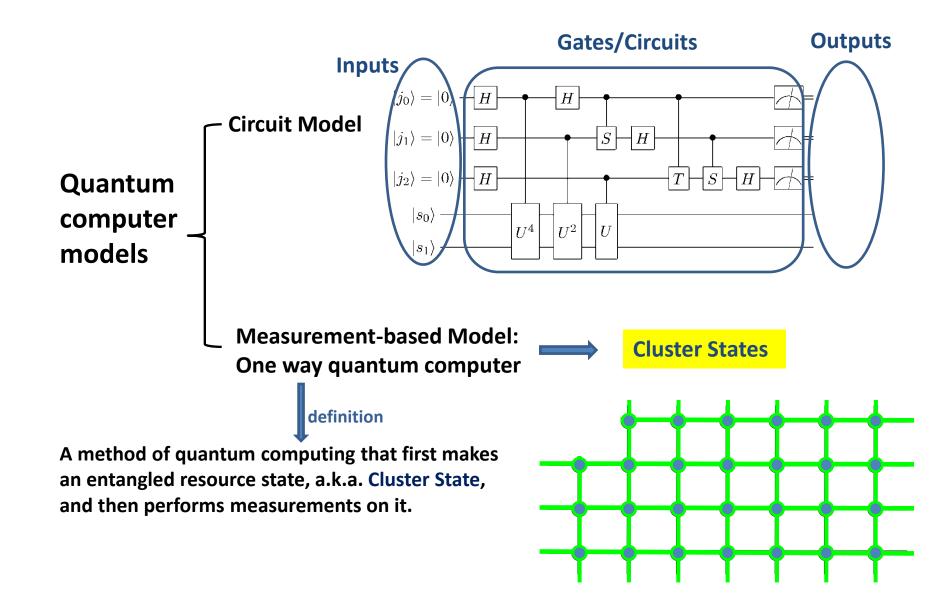
The unit Qbit **Discrete Variable** $\alpha |0> + \beta |1>$ $|+>= (|0>+|1>)/\sqrt{2}$ $|-> = (|0> - |1>)/\sqrt{2}$ Pauli $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $Z \mid 0 > = \mid 0 > Z \mid 1 > = -\mid 1 >$ Z | +> = | ->, Z | -> = | +>Pauli $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ X | +> = |+>, X| -> = -| ->X |0> = |1>, X|1> = |0>Hadamard H $=\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ H|0> = |+>H|1> = |->

Qmode **Continuous Variable** $|\mathbf{q}\rangle$ $|\mathbf{p}>$ $e^{i\delta Q}|q\rangle = e^{i\delta q}|q\rangle$ $e^{i\delta Q}|p\rangle = |p + \delta\rangle$ $e^{-i\epsilon P}|p\rangle = e^{-i\epsilon p}|p\rangle$ $e^{-i\epsilon P}|q\rangle = |q + \epsilon\rangle$ **Fourier Transform** $|\mathbf{q}\rangle = \int e^{-ipq} |\mathbf{p}\rangle d\mathbf{p}$ $|\mathbf{p}\rangle = \int \mathbf{e}^{iqp} |\mathbf{q}\rangle d\mathbf{q}$

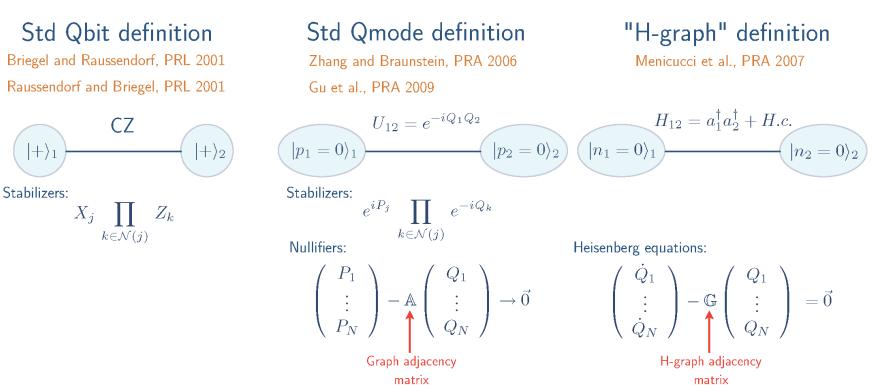
Optical Modes (amplitude, phase)

$$Q = \frac{1}{\sqrt{2}}(a^+ + a)$$
$$P = \frac{i}{\sqrt{2}}(a^+ - a)$$

Quantum Computer



Different definitions of graph (cluster) states

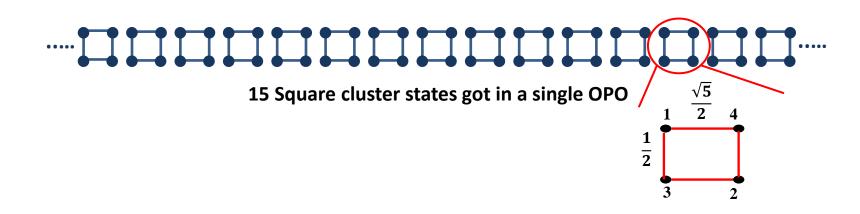


matrix

Our way of making Cluster State : VERY SCALABLE in a single OPO (Optical Parametric Oscillator)

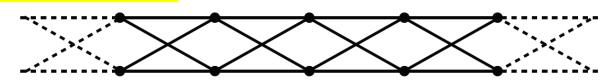
One-way quantum computing in the optical frequency comb N.C. Menicucci, S.T. Flammia, and O. Pfister PRL **101**, 130501 (2008)

Parallel generation of quadripartite cluster entanglement in the optical frequency comb M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister PRL **107**, 030505 (2011)



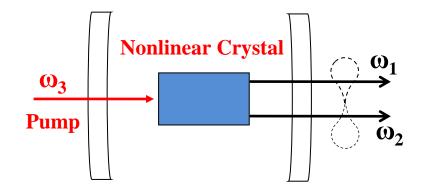
Go further: Making bigger cluster state

Quantum wire Cluster State



Background (OPO)

Optical Parametric Oscillator (OPO)



An OPO converts an input laser wave (called "pump") into two output waves of lower frequency by means of second order nonlinear optical interaction, when two conditions are satisfied:

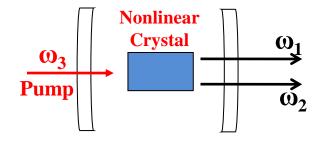
$$\omega_1 + \omega_2 = \omega_3$$
$$k_1 + k_2 = k_3$$

Background (EPR)

$$H = i\hbar\chi \,(ba_1^+a_2^+ - b^+a_1a_2)$$

Treat pump classically, $b = \beta e^{i\varphi}$, $take \varphi = 0$

$$H = i\hbar\kappa \left(a_1^+ a_2^+ - a_1 a_2\right) \quad \kappa \stackrel{\text{\tiny def}}{=} \chi\beta$$



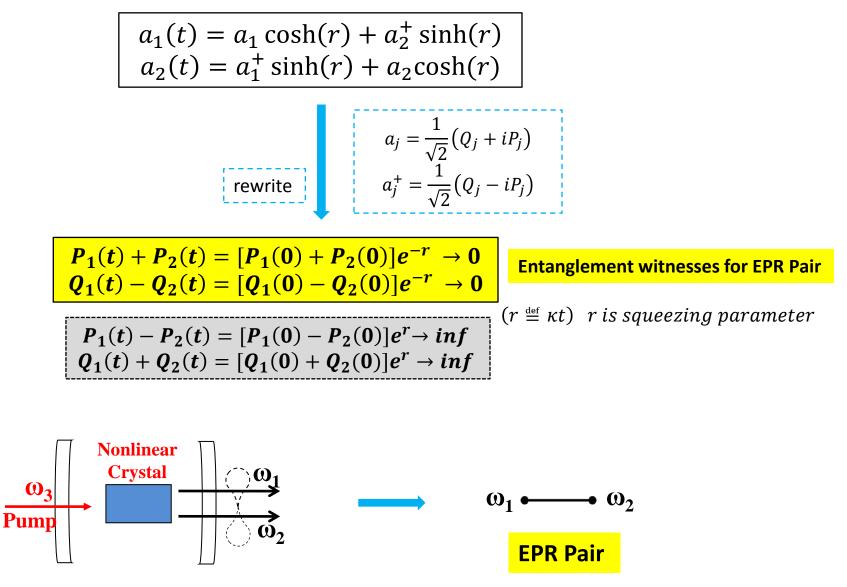
Solving the Heisenberg Equations $i\hbar \dot{a}_j = [a_j, H]$ we obtain the following equations:

$$\dot{a_1} = \kappa a_2^+, \qquad \dot{a_1^+} = \kappa a_2$$

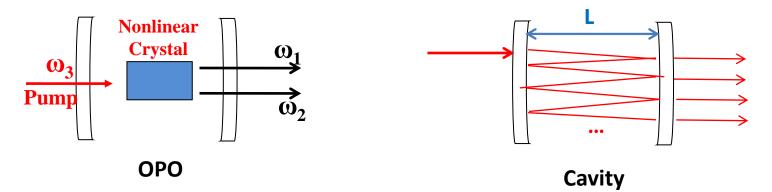
 $\dot{a_2} = \kappa a_1^+, \qquad \dot{a_2^+} = \kappa a_1$

Solve coupled equations Initial conditions $a_1(t) = a_1(0)\cosh(r) + a_2^+(0)\sinh(r)$ $a_2(t) = a_1^+(0)\sinh(r) + a_2(0)\cosh(r)$ $(r \stackrel{\text{def}}{=} \kappa t)$

Background (EPR)



Background (Optical Frequency Comb)



For an optical beam to be *"resonant"* in a cavity, <u>constructive interference</u> is needed, which requires the optical path difference between each transmitted beam is an integer multiple of the wavelength:

$$\lambda = \frac{c}{f}$$

$$f = n \frac{c}{2L} = nFSR$$

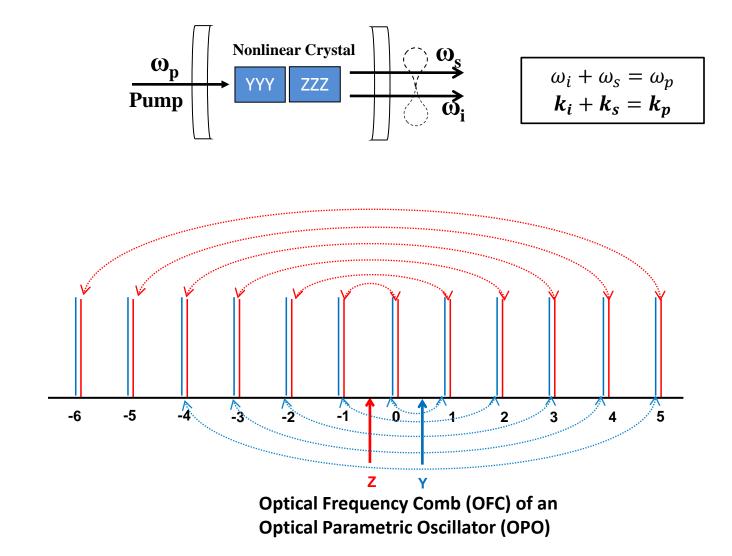
$$(\frac{c}{2L} \stackrel{\text{def}}{=} Free Spectral Range)$$

$$\dots$$

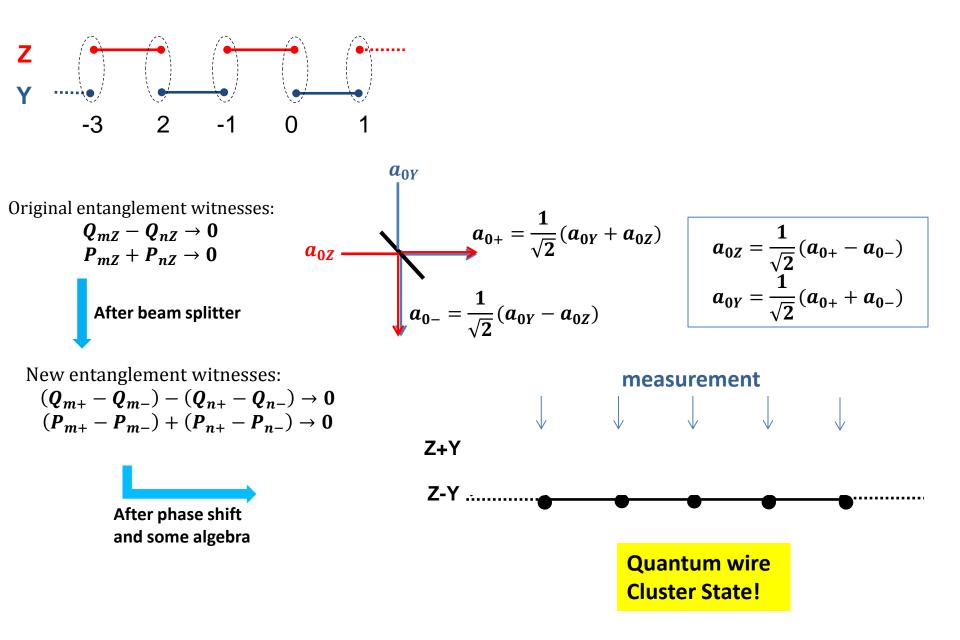
$$f$$

$$Gptical Frequency Comb$$

How to Generate the Quantum Wire Cluster State

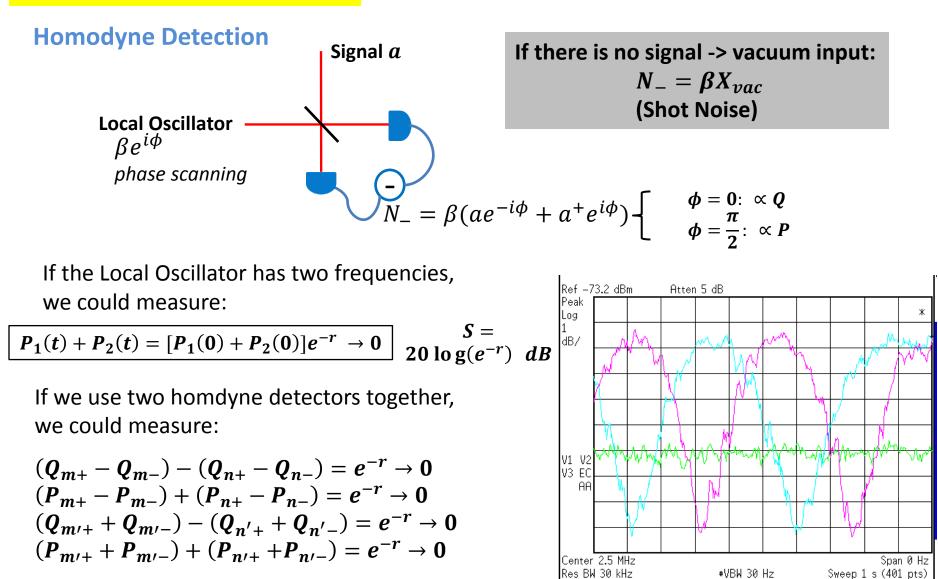


How to Generate the Quantum Wire Cluster State



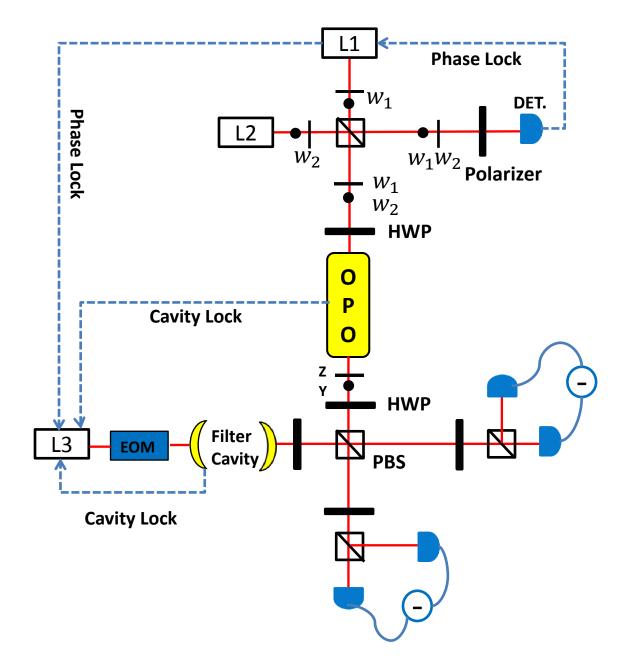
How to Verify the Quantum Wire Cluster State

To measure its entanglement witnesses



ZZZ EPR squeezing measurement

Experimental Setup



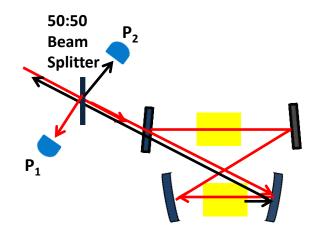
Experimental Difficulties

- Two phase lockings and two cavity lockings have to work at the same time
- Squeezing detection super sensitive to any loss or fluctuations (pump shifts, LO not perfectly aligned, air drifts, etc.) $R_{-} = 1 - \eta \xi^{2} \zeta \rho \frac{4x}{(1+x)^{2} + 4\Omega^{2}}$
- OPO emits back-propagating beams

Things I have done:

- ✓ High visibility obtained for Homodyne Detection
- ✓ SHG measurement for ZZZ and YYY crystals
- ✓ Backward reflection reduction
- ✓ Intracavity loss measurement
- ✓ Lasing threshold power lowered
- ✓ Laser problem fixed with InnoLight
- ✓ Phase noise reduction
- \checkmark >3 dB squeezing obtained for ZZZ EPR pairs

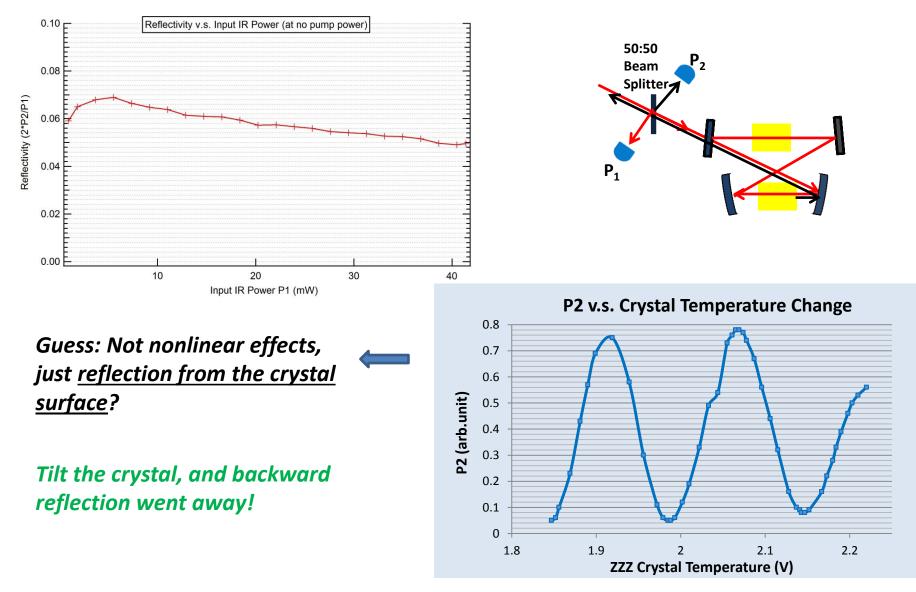
Backward Reflection Reduction



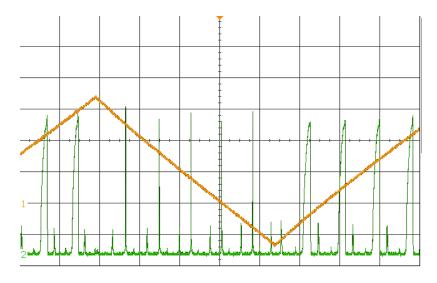
 $P_1 = power of input IR to OPO$ $P_2 = half power of backreflected IR$

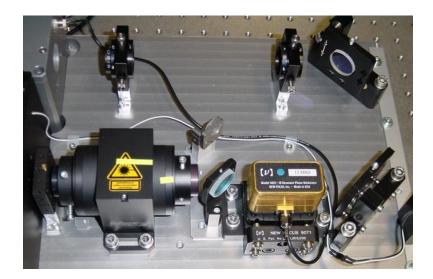
Backward Reflectivity =
$$\frac{2P_2}{P_1}$$

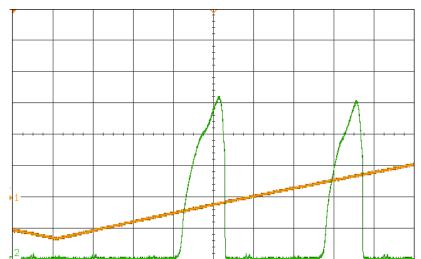
Backward Reflection Reduction



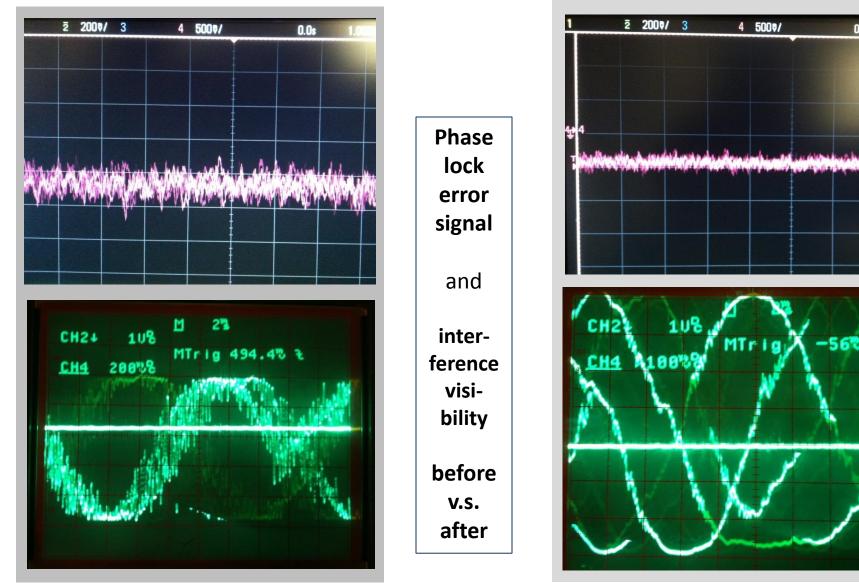
• Improve the laser alignment Problem: Laser flashing/blinking, mode not stable







• Decrease the phase fluctuation **Problem: phase lock noise was big**



0.0s

1.0002/

Future work

- Confirm the obtain of the Quantum-Wire cluster state structure
- Increase the measurement range to find "how long" the wire is
- Add in another OPO to make a Square Grid cluster state (Pei Wang)

Thank you!

Cluster States

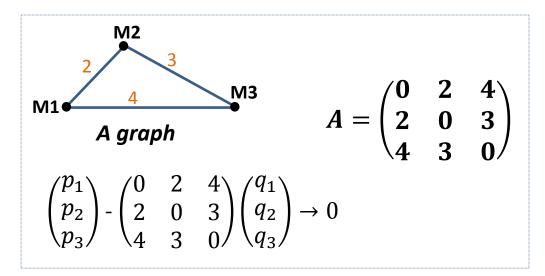
The definition of the standard Continuous Variable Cluster State is:

$$p - Aq \rightarrow 0$$

where **p** and **q** are column vectors of quadratures :

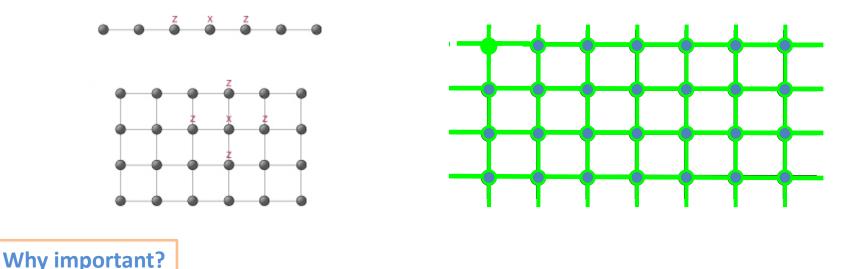
$$P_j = \frac{i}{\sqrt{2}} \left(a_j^+ - a_j \right)$$
$$Q_j = \frac{1}{\sqrt{2}} \left(a_j^+ + a_j \right)$$

matrix A is the adjacent matrix for the cluster state's graph.



Cluster States

What is cluster state?



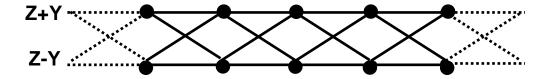
Measurement-based Model (One-way quantum computer):

A method of quantum computing that first makes an entangled resource state, a.k.a. Cluster State, and then performs measurements on it.

It's called "one-way" because the resource state is destroyed by the measurement.

How to Verify the Quantum Wire Cluster State

The way to verify the obtain of the quantum wire cluster state is to measure its entanglement witnesses



 $(Q_{m+} - Q_{m-}) - (Q_{n+} - Q_{n-}) \rightarrow 0$ $(P_{m+} - P_{m-}) + (P_{n+} - P_{n-}) \rightarrow 0$ $(Q_{m'+} + Q_{m'-}) - (Q_{n'+} + Q_{n'-}) \rightarrow 0$ $(P_{m'+} + P_{m'-}) + (P_{n'+} + P_{n'-}) \rightarrow 0$

Use Homodyne Detection to measure nullifiers