Low Field MRI of Laser Polarized Noble Gases

Yuan Zheng, 4th year seminar, Feb, 2013

Outline

Introduction to conventional MRI

Low field MRI of Laser Polarized (LP) noble gases

- Spin Exchange Optical Pumping (SEOP)
- Nuclear Magnetic Resonance (NMR) signals
- MRI Gradient Coils
- Xe-129 gas MRI
- He-3 gas MRI

Adapting our apparatus for small animal MRI

Outline

Introduction to conventional MRI

Low field MRI of LP noble gases

- Spin Exchange Optical Pumping (SEOP)
- Nuclear Magnetic Resonance (NMR) signals
- Gradient Coils
- Xe-129 gas MRI
- He-3 gas MRI

Adapting our apparatus for small animal MRI

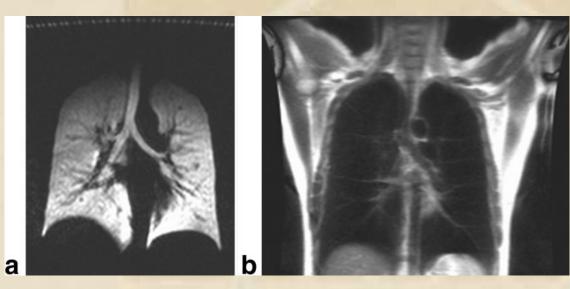
Introduction to MRI

- First paper about Magnetic Resonance Imaging: P. C. Lauterbur, Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance, Nature, 242, 1973
- Since then, MRI has experienced rapid growth and is now the most powerful diagnostic tool.

Pros and Cons of MRI

- Advantages:
- 1) Safety: Non-invasive, no radiation
- 2) Flexibility:
 - a, Image content is under control
 - b, Image of an arbitrary plane can be obtained.
- Disadvantages:
- 1) Expensive
- 2) Not for everyone
- 3) LIMITED FOR LUNG IMAGING

Outline


Introduction to conventional MRI

>Low field MRI of LP noble gases

- Spin Exchange Optical Pumping (SEOP)
- Nuclear Magnetic Resonance (NMR) signals
- Gradient Coils
- Xe-129 gas MRI
- He-3 gas MRI

Adapting our apparatus for small animal MRI

- A new branch for MRI: Laserpolarized (LP) Noble Gas Lung Imaging.
- M.S. Albert, G.D. Cates, et al, Biological magnetic resonance imaging using laser-polarized ¹²⁹Xe, Nature, 370, 1994

a, 4.5mM of 40%
polarized 3He
b, conventional
proton MRI of the
lung parenchyma

Sean B. Fain, et al. Functional Lung Imaging Using Hyperpolarized Gas MRI

Low field LP gas MRI

2 Tesla vs 0.002 Tesla

Advantages of performing MRI at a low field:

- More homogeneous holding field
- Compatible with pacemakers and other metal implants
- Much Cheaper

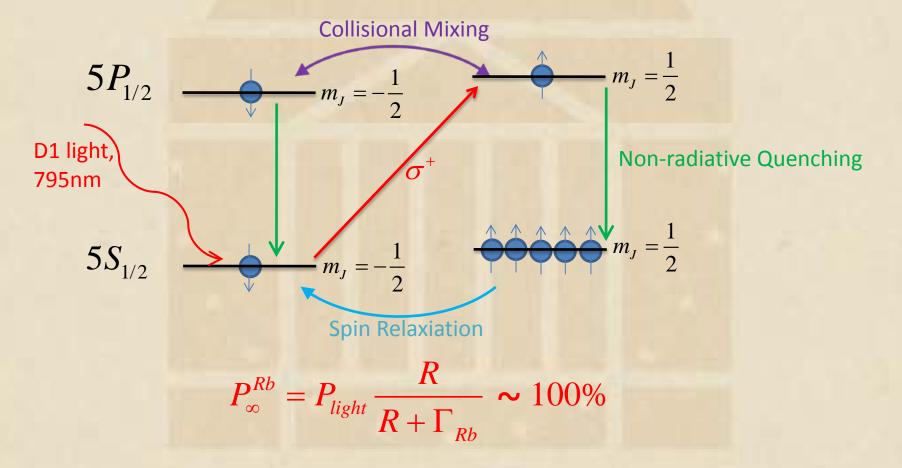
Low field imaging is only possible with LP noble gases.

Spin Exchange Optical pumping

Polarization of a spin-1/2 system

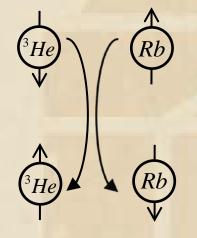
$$P = \frac{N_{+} - N_{-}}{N_{+} + N_{-}}$$

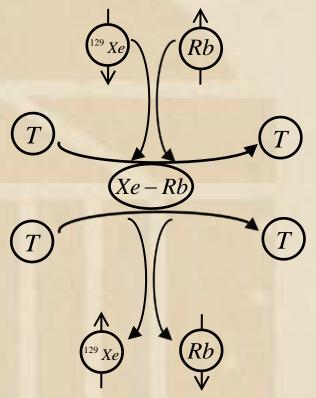
 N_{+} and N_{-} are the number of spins in each of the two possible states.


Thermal Polarization:

 $P = \tanh(\frac{\gamma \hbar B}{2kT})$

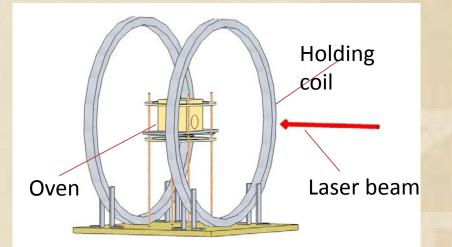
At T=300K, the polarization of ¹H in 1T field ~ 3.4×10^{-6} .


By SEOP, polarization of ³He or ¹²⁹Xe∼ 50%, 10⁵ times higher! That's why they are also called Hyperpolarized (HP) gases.

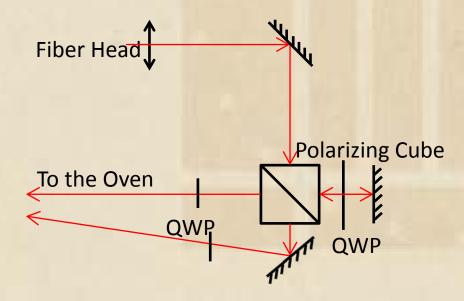

- Two steps in SEOP:
- 1) Optical Pumping: alkali vapor is spin polarized by the laser.

Spin Exchange Optical pumping

2) Spin Exchange: spin is transferred to the noble gas nuclei.


Binary Collision

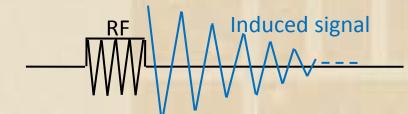
Formation of a Van der Waals molecule

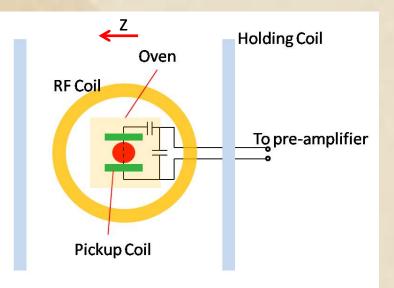

 $P_{\infty}^{g} = P_{\infty}^{Rb} \frac{\gamma_{se}}{\gamma_{se} + \Gamma}$

Spin Exchange Optical pumping

SEOP basic setup

A glass cell with some alkali metal, some buffer gas and ³He or ¹²⁹Xe is placed in the oven. The alkali vapor density is controlled by the oven temperature.

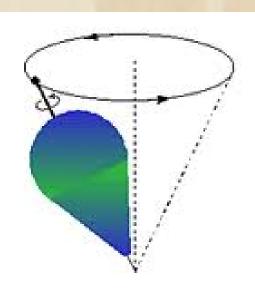



One laser beam is splitted into two beams, both of which are circularly polarized.

Nuclear Magnetic Resonance Signals

Manipulate the Spins

- Two techniques to study a NMR signal
- 1. Adiabatic Fast Passage. (AFP)
 - a) RF on
 - b) Sweep the holding field and take data
 - c) RF off
- 2. Pulsed Nuclear Magnetic Resonance (PNMR).
 - a) RF on
 - b) RF off
 - c) Take data



The holding coils, RF coils and pickup coils are perpendicular to each other.

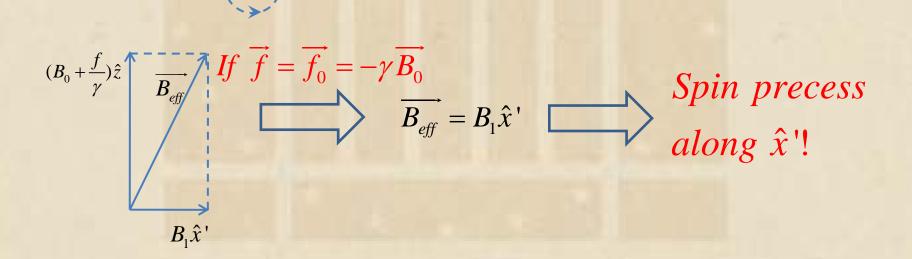
Spins in a Magnetic Field

 Spinning top in gravity
 Spin motion: field:

$$\frac{d\vec{L}}{dt} = m\vec{R} \times \vec{g}$$

$$\frac{d\vec{\mu}}{dt} = \gamma \vec{\mu} \times \vec{B_0}, \ \vec{\mu} = \gamma \vec{J}$$

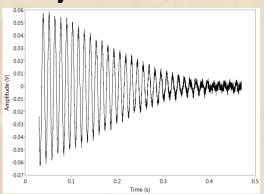
- Same solution: Precession $\overrightarrow{f_0} = -\gamma \overrightarrow{B_0}$
- Effective holding field in a rotating frame:


$$\overrightarrow{B_{0eff}} = \overrightarrow{B_0} + \frac{\overrightarrow{f}}{\gamma}$$

Interaction with a Radio Frequency (RF) field

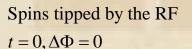
Consider applying a RF in the transverse plane.

In a frame rotating at the RF frequency, the effective field is:


$$\overrightarrow{B_{eff}} = (B_0 + \frac{f}{\gamma})\hat{z} + B_1\hat{x}'$$

Nuclear Magnetic Resonance Signals

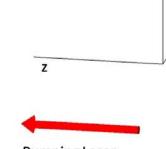
Free Induction Decay (FID)


Transvers spins precessing along the holding field with a decaying amplitude will induced an EMF in the pick up coil.

Two reasons for the amplitude decay:

- 1) Internal "Spin-Spin" relaxation time T₂.
- 2) External relaxation time T_2' . (Due to field inhomogeneity) Observed $T_2: \frac{1}{T_2^*} = \frac{1}{T_2} + \frac{1}{T_2} \approx \frac{1}{T_2'}$

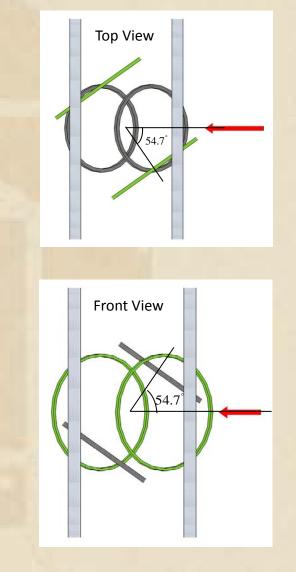
Spins 'fan out' $t = \tau, \Delta \Phi = -\gamma \Delta B \tau$


ΛΦ

Gradient Coils

MRI setup \approx SEOP setup + Gradient coils

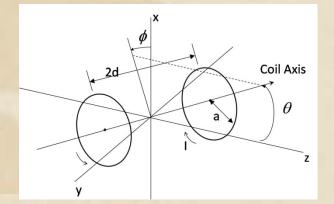
MRI Gradient Coils


X gradient coil

х

Pumping Laser

Near anti-Helmholtz coil pairs at special orientations.

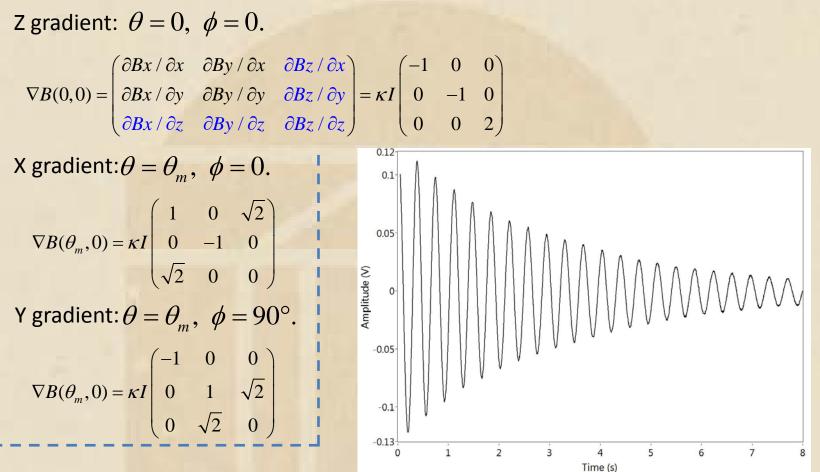


Gradient Coils

Why 54.7°? (This is usually called the "magic angle" θ_m)

What really matters is how the holding field (Bz) varies.

 $\nabla B = \begin{pmatrix} \partial Bx / \partial x & \partial By / \partial x & \partial Bz / \partial x \\ \partial Bx / \partial y & \partial By / \partial y & \partial Bz / \partial y \\ \partial Bx / \partial z & \partial By / \partial z & \partial Bz / \partial z \end{pmatrix}$

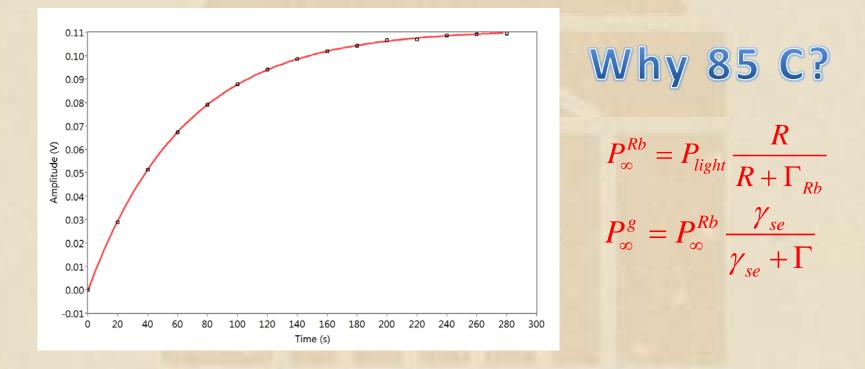


 $= 3\kappa I \begin{pmatrix} \sin^2(\theta)\cos^2(\phi) - 1/3 & \sin^2(\theta)\sin(\phi)\cos(\phi) & \sin(\theta)\cos(\theta)\cos(\phi) \\ \sin^2(\theta)\sin(\phi)\cos(\phi) & \sin^2(\theta)\sin^2(\phi) - 1/3 & \sin(\theta)\cos(\theta)\sin(\phi) \\ \sin(\theta)\cos(\theta)\cos(\phi) & \sin(\theta)\cos(\theta)\sin(\phi) & \cos^2(\theta) - 1/3 \end{pmatrix}$

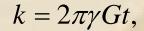
 $\kappa = \frac{3\pi na^2 d}{5(d^2 + a^2)^{5/2}} G(cm A)^{-1}$

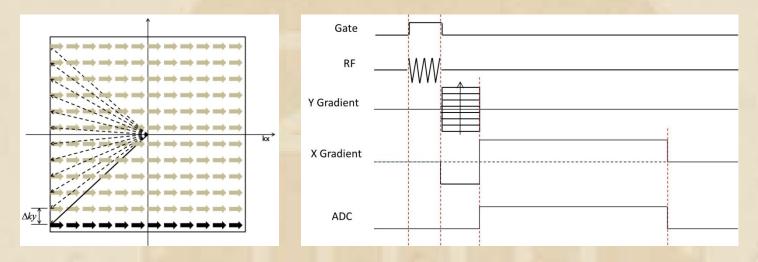
The magic angle is special because it eliminates the z gradient. $\cos^2(\theta_m) - 1/3 = 0$

Gradient Coils



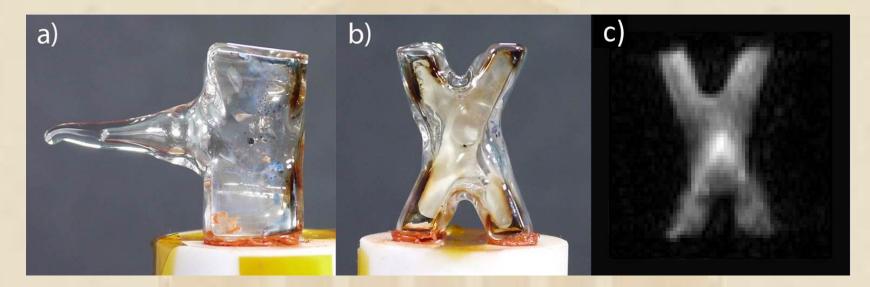
Purposes of the Gradients:


All the three gradients are used to trim the holding field so that the Free Induction Decay has a longer T₂*. (less than 200 ms without trimming)
We take 2D images without slice selection. X and Y gradients are applied as imaging gradients to acquire images of the sample projected on the XY plane.


Xe-129 MRI Procedure

1, Polarize the sample by SEOP. Our sample is a X shaped glass cell with 2.8 atms of isotopically enriched ¹²⁹Xe. We keep the oven at 85 C and the polarization reaches 5% in 4 mins.

2, Excite the spins to the transverse plane. Apply appropriate Gradients and record the data. Only one line of k space data is taken.


While traveling in k space, the spins precess in a controlled manner and the interference signal is recorded.

3, Repeat step 1 and 2 to collect more data in k space. We take 32 lines in k space and the whole procedure takes 2 hours.

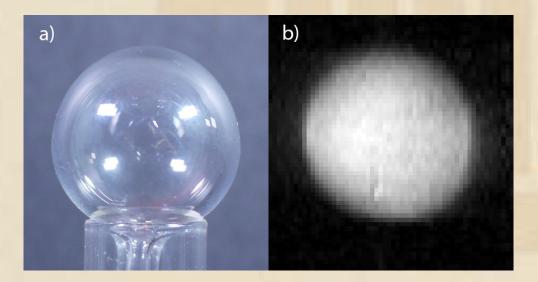
4, Image reconstruction. $s(k) \xleftarrow{\text{Fourier Transform}} \rho(x)$

Xe-129 gas MRI

Xe cell and Image

Shown above is an image with 8 averages.

Both x and y direction resolutions are 1mm. Image artifacts:


- 1, Central bright area.
- 2, Dimness in the lower legs.

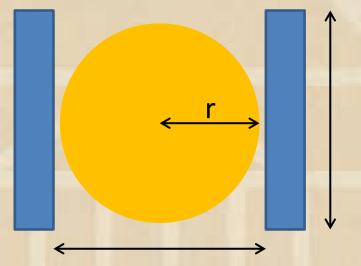
He-3 MRI Procedure

- 1. Polarize He-3 gas by SEOP. A much larger magnetization can be achieved.
- 2. Perform MRI using a Fast Low Angle Shot (FLASH) pulse sequence.
 - Tip the spins by a small angle. Apply necessary gradients and take data for one line.
 - Repeat 32 times.

Advantages of FLASH Imaging:

- 1. Only polarize once.
- 2. Much faster.

He cell (2.8 atm) and its image Resolution: 1mm


Outline

- Introduction to conventional MRI
- Low field MRI of LP noble gases
 - Spin Exchange Optical Pumping (SEOP)
 - Nuclear Magnetic Resonance (NMR) signals
 - Gradient Coils
 - Xe-129 gas MRI Procedures
 - He-3 gas MRI Procedures

Adapting our apparatus for small animal MRI

Small animal MRI

Even "small" animals are still bigger than our pickup coils (1"). Bigger pickup coils need to be built for bigger subjects.

Signal $\propto r^3 \cdot r^2 \cdot r^{-3} = r^2$ Noise $\propto r^2$

S/N is a constant.

However, gas density will be lower... but we can perform MRI in a well shielded room.2.8 atm1 atmPickup noise> Johnson noise

Thanks!