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Physics is Organized by Scale

Typical Energy Scales of a Ferromagnet

10,000 K

1,000 K

100 K

10 K

0 K

Energy

Paramagnet

Ferromagnetic Order

Curie Temperature



The Mother of  All Effective 

Hamiltonians



Effective Hamiltonians
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Semiconductor Heterostructures can 

be Surprising:

Quantum Hall Effect
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2D Electron Gas

Magnetic Field Von Klitzing, Dorda, & Pepper

in a B Field



Hall and Longitudinal 

Resistances
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Quantum Hall Effect

Marcus Group



Integer Quantum Hall Edge Modes

Landau levels bend up near the edge of  a sample and 

intersect the chemical potential
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Gapless excitations

1. Fermionic

2. Near the edge

3. One per filled 

Landau level

4. Linear dispersion

5. Chiral

Halperin 1982

Example: 𝜐 = 3



Stormer and Tsui

Fractional Quantum Hall Effect

Example: 𝜐 = 1/3



Topological Order and 

Experimental Signatures
1. Fractionalization of  Charge: e/3 Quasiparticles

Observed in Shot Noise or current fluctuation Measurements

Saminadayar, Glattli, Jin and Etienne
Theory: Kane-Fisher; Fendley-Ludwig-Saleur

ν

Is D1

D2



Experimental Signatures
1. Anyonic Statistics – generalization of                       

Bose-Fermi statistics

‘Indications’/’encouragement’ of  its observance in interferometry

Camino, 

Zhou, and 

Goldman



Numerical Signatures

Topology-dependent ground state degeneracy 

Not observable in actual experiments as you need to

fabricate a torus in the lab

Useful in numerics

Wen(      top order)



Edge States Provide a Window 

into the Bulk Physics

Theory: Kane-Fisher; Fendley-Ludwig-Saleur

Tunneling into the edge

from a metallic lead

Compared with 𝜐 = 1

Exp: Chang, Pfeiffer, West



When can multiple, distinct edges bound the 

same bulk phase?

Experimentally relevant examples bulks with distinct 

edge phases include 

(cleanest signatures): 

IQH ν ≥ 8, FQH ν = 8/3, 16/5, 16/7, …

Bulk 2DEG D

1D edge

S



Integer Quantum Hall Edge
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Non-Chiral Integer Edge

Chiral edges are stable, 

non-chiral edges are generically unstable.



Fractional Quantum Hall Edges

Bosonization:



Fractional Quantum Hall Edge

vs.

𝑘 = 1 general k

GOOD BAD – NOT ALLOWED



Multiple Edge Modes

# right-moving modes - # left-moving modes = signature of  

Wen Int. J. Mod. Phys. B6 1711 (1991)



Examples of  K-matrices

IQH: ν = N

Laughlin: ν = 1/m

Bilayer system:ν = 1/3 + 1/5

Hierarchy: ν = 2/5

ν=1/5

ν=1/3



Bulk-Edge Correspondence



Redundancy of  Edge (and Bulk) 

Descriptions
Are these two theories the same (ignoring the charge vector)?

Yes.

Same operators and scaling dimensions; 

preserves excitation spectrum

Read, PRL 65 1502 (1990); Fröhlich and Thiran J. Stat. Phys. 76, 209 (1994)



Distinct classes of  K-matrices can (almost always) 

be distinguished by their scaling dimensions

If  K is chiral, scaling dimensions are universal:

Scaling dimension:

When K is non-chiral, Δ depends on V-matrix

Plamadeala, Nayak, MM



Scaling dimensions can be used to 

physically distinguish edge phases

ν

Is D1

D2

1) Tunneling across a QPC

Many terms: most relevant minimizes mK-1m

Chamon, Freed Wen (1994)

Kane and Fisher (1992)

Creates R-mover Annihilates L-mover

Expect most relevant term to dominate backscattered current:



ν

D1

Is2) Tunneling from

a metallic lead

Most relevant term 

minimizes mK-1m + n2

Chamon, Freed Wen (1994)    Kane and Fisher (1992)

Scaling dimensions can be used to 

physically distinguish edge phases

Tunnel one electron:

Tunnel two electrons:

n terms

Tunnel n electrons:



EDGE PHASE TRANSITIONS

Plamadeala, MM, & Nayak

Cano, Cheng, MM, Nayak, Plamadeala, &Yard
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The confining potential matters
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Can interactions with gapped edge 

modes change the phase of  the edge?

Δ

Chamon & Wen



Append the New Modes to the Existing 

K-matrix

(New quasiparticles are electrons)

ν= 1 strip



When could inter-edge tunneling open a 

gap? 

?
Given an inter-edge Tunneling Operator:

Conserves Electrical Charge

Spin-0:

Not met for a chiral edge. Example:

Haldane PRL 74 2090 (1995)

Requirements on the Operator



Edge Transitions: Example 1

Enlarge:

1) 

2) 

Strategic variable 

change



Is the resulting theory the same or 

different?
Example, cont

1) 2) 

Are these phases distinct?

Most relevant term: Most relevant term:

Different!



Tunneling Distinguishes the Edges

Example, cont

ν

Is D1

D2

1) Tunneling across a QPC

ν

D1

Is2) Tunneling from

a metallic lead

Both edges have a charge e operator, 

but different scaling dimensions



Edge Transitions: Example 2

Bose-Fermi Transitions

IQH ν = 8:

Even lattice!

Example





Can distinguish experimentally between 

candidate ν = 8 phases

ν

Is D1

D2

1) Tunneling across a QPC

(electron tunneling)

(charge 2e tunneling of  

composite particle)



Can distinguish experimentally between 

candidate ν = 8 phases

ν

D1

Is

2) Tunneling from

a metallic lead
In I8 state tunnel one electron:

Tunnel two electrons from lead:

E8 state does not have a charge e operator!

Spin-polarized:

Not spin-polarized:



Physical Criteria for Distinct 

Edges

When do distinct edge phases exist for a given bulk?

Answer: 

• Two distinct edges (different tunneling exponents) can border 

the same bulk when the braiding matrix for the bulk 

quasiparticles inferred from the edge modes is the same. 

• The edge transition does not necessarily preserve the total 

number of  edge modes.

• It may be necessary to add additional 𝜐 = 1 modes.



MATHEMATICAL FORMULATION



Equivalence class of  K-matrices = lattice

K-matrix
Lattice 

Choose new basis:

Edge phase = lattice

= K-matrix equivalence class

Example: K = (3)



Quasiparticles and Operators

Example: K = (3), 

Inner product statistics      scaling dimension (on diagonal)



Want to classify a bulk phase by its 

“primitive” quasiparticles

Dual lattice vectors = quasiparticles

Original lattice vectors = trivial particles

“Discriminant group” =

Group of  primitive quasiparticles = 

quasiparticles modulo the first particle with trivial 

statistics with all other particles 

Lattices Discriminant groupsmany-to-one

Edge phases Bulk phasemany-to-one

Example: K = (3), Discriminant group =  



Stable Equivalence

ν
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ν
=

 1

ν
=

 0



Edges Are Stably Equivalent if  …

Chiral transitions if:

Nikulin Math. USSR Izv. 14, 103 (1980)



Formalize the odd-even correspondence

For every fermionic bulk phase, there is a corresponding* edge 

phase which yields the same** bulk quasiparticles and 

statistics and has no gapless charge e operator

Caveats

*might have different number of  edge modes

**mod e

Utilize another theorem from Nikulin:

Nikulin Math. USSR Izv. 14, 103 (1980)



Future Directions

• Generalizations – non-Abelian, higher-dimensions, 

interplay of  symmetry.

• Could there be a physical mechanism, e.g., disorder, that 

initiates the flow of  V?

• Many more edge transitions between not-fully-chiral edge 

states, e.g., 1/3 state.

• There exists an intriguing analogy between 4-manifold 

topology and the Abelian Hall states. Does this analogy 

run deeper?



Conclusions

 A bulk chiral quantum Hall phase generically has multiple 

edge phases.

 These phases can be distinguished experimentally using 

tunneling measurements.

 Every fermionic edge phase has a corresponding bosonic

edge phase



Heterostructure Band Energy 

Diagram



More topologically trivial additions

,

Superfluid strip

Several ν= 1 strips

Strip of  anything non-chiral with trivial quasiparticles



In principle, can count the lattices in a genus 

by the Smith-Siegel-Minkowski mass formula

Conway and Sloane 1988

 Chiral Abelian quantum Hall states with more than 10 

edge modes have multiple distinct chiral edge phases1

 Otherwise there is a finite set of  bulk states with only one 

edge phase; all others have multiple2

Multiple edge phases are the norm, not the exception

1G. Watson, Proc. London Math Soc. 12 57787 (1962)
2D. Lorch and M. Kirschmer, LMS Journal of  

Computation and Mathematics 16, 172 (2013)

Sum over lattices 

in a genus = sum 

over edge phases

# of  automorphisms of  lattice

counts symmetries of  K matrix



Example: even-odd equivalence by adding 

edge modes

No non-trivial stable 

equivalence preserving 

full chirality

Eisenstein, et al, PRL 88, 076801 (2002)Even lattice



Candidate states at ν=3+1/5 

distinguishable by experiment
Example, cont

ν

Is D1

D2

1) Tunneling across a QPC

ν

D1

Is2) Tunneling from

a metallic lead

New edge does not have electron

(tunnel electron)

(tunnel 2 electrons, 

spin polarized)



Candidate states at ν=3+1/5 have same 

quasiparticles mod e

Compare quasiparticle charge:

Defined mod e Defined mod 2e


