Majorana materializes

Mourik et al., Science 2012

Jason Alicea (Caltech)

Acknowledgments

Anton Akhmerov (Harvard)
Erez Berg (Weizmann)
David Clarke (Caltech)
Paul Fendley (UVA)
Lukasz Fidkowski (Station Q)
Matthew Fisher (UCSB)
Marcel Franz (UBC)
Bert Halperin (Harvard)
Jun Hu (UCl)
Liang Jiang (Caltech)
Takuya Kitagawa (Harvard)
Shu-Ping Lee (Caltech)
Netanel Lindner (Caltech)
Roman Lutchyn (Station Q)
Roger Mong (Caltech)

Chetan Nayak (Station Q)
Yuval Oreg (Weizmann)
David Pekker (Caltech)
Falko Pientka (Berlin)
Gil Refael (Caltech)
Johannes Reuther (Caltech)
Alessandro Romito (Berlin)
Kirill Shtengel (UCR)
Oleg Starykh (Utah)
Ady Stern (Weizmann)
Miles Stoudenmire (UCI)
Felix von Oppen (Berlin)
Conan Weeks (UBC)
Ruqian Wu (UCI)
Amir Yacoby (Harvard)

Outline

- Majorana fermions: what they are \& why they're interesting
- The quest for Majorana in the solid state
- Getting the most out of Majorana fermions
- Experimental status \& closing remarks

Outline

- Majorana fermions: what they are \& why they're interesting
- The quest for Majorana in the solid state
- Getting the most out of Majorana fermions
- Experimental status \& closing remarks

Exchange statistics

Describes how wavefunctions transform when indistinguishable particles exchange positions
$\psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{\mathbf{N}}\right)$

Exchange statistics

Describes how wavefunctions transform when indistinguishable particles exchange positions
$\psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{\mathbf{N}}\right)$

Exchange statistics

Describes how wavefunctions transform when indistinguishable particles exchange positions
$\psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{\mathbf{N}}\right)$

Exchange statistics

Describes how wavefunctions transform when indistinguishable particles exchange positions
$\psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{\mathbf{N}}\right)$

Exchange statistics

Describes how wavefunctions transform when indistinguishable particles exchange positions

$$
\psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{\mathbf{N}}\right) \quad \longrightarrow \quad \psi^{\prime}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{\mathbf{N}}\right)
$$

Extraordinarily fundamental!
Underlies most condensed matter phenomena.

Role of dimensionality

$\mathbf{d}=3$
Only bosons \& fermions

Role of dimensionality

$\mathbf{d}=3$
Only bosons \& fermions

Role of dimensionality

$\mathbf{d}=3$
Only bosons \& fermions

Role of dimensionality

$\mathbf{d}=3$
Only bosons \& fermions

Role of dimensionality

$\mathbf{d}=3$
Only bosons \& fermions

Role of dimensionality

$\mathbf{d}=3$
Only bosons \& fermions

Role of dimensionality

$\mathbf{d}=\mathbf{3}$
Only bosons \& fermions

$\mathbf{d}=\mathbf{2}$
Anyons are now possible!

Role of dimensionality

$\mathbf{d}=\mathbf{2}$
Anyons are now possible!

$\mathbf{d}=\mathbf{I}$
Exchange not well defined...

Role of dimensionality

$\mathbf{d}=\mathbf{2}$
Anyons are now possible!

$\mathbf{d}=\mathbf{I}$
Exchange not well defined...

Role of dimensionality

$\mathbf{d}=\mathbf{2}$
Anyons are now possible!

$\mathbf{d}=\mathbf{I}$
Exchange not well defined...

Role of dimensionality

$\mathbf{d}=3$
Only bosons \& fermions

$d=\mathbf{2}$
Anyone are now possible!

$\mathbf{d}=\mathbf{I}$
Exchange not well defined...
...because particles inevitably "collide"

Non-Abelian anyons

Non-Abelian anyons

"Rotates" wavefunction to a different quantum state!

$$
\psi_{a} \rightarrow U_{a b} \psi_{b}
$$

Non-Abelian anyons

"Rotates" wavefunction to a different quantum state!

$$
\psi_{a} \rightarrow U_{a b} \psi_{b}
$$

Urgently wanted for topological quantum computation

Kitaev; Freedman; Preskill; Frohlich, etc. Nayak, Simon, Stern, Freedman, \& Das Sarma, RMP 80, 1083 (2008)

Simplest source of non-Abelian statistics: Majorana fermions

The "inventor" of Majorana fermions

> "There are many categories of scientists: people of second and third rank, who do their best, but do not go very far; there are also people of first-class rank, who make great discoveries, fundamental to the development of science. But then there are the geniuses, like Galileo and Newton. Well Ettore Majorana was one of them." -Enrico Fermi

Ettore Majorana (1906-1938?)

The "inventor" of Majorana fermions

Ettore Majorana (1906-1938?)
"There are many categories of scientists: people of second and third rank, who do their best, but do not go very far; there are also people of first-class rank, who make great discoveries, fundamental to the development of science. But then there are the geniuses, like Galileo and Newton. Well Ettore Majorana was one of them." -Enrico Fermi
"Majorana had greater gifts than anyone else in the world. Unfortunately he lacked one quality which other men generally have: plain common sense." -Enrico Fermi

The Search for Majorana fermions

Majorana fermions are their own antiparticle
 $$
\gamma=\gamma^{\dagger}
$$

The Search for Majorana fermions

Majorana fermions are their own antiparticle
 $$
\gamma=\gamma^{\dagger}
$$

Neutrinos?

The Search for Majorana fermions

Majorana fermions are their own antiparticle
 $$
\gamma=\gamma^{\dagger}
$$

74\% Dark Energy

The Search for Majorana fermions

Majorana fermions

 are their own antiparticle $\gamma=\gamma^{\dagger}$

Observation would reveal something quite profound about nature.

Outline

- Majorana fermions: what they are \& why they're interesting
- The quest for Majorana in the solid state
- Getting the most out of Majorana fermions
- Experimental status \& closing remarks

Majorana fermions in condensed matter?

Typical metal or insulator

Majorana fermions in condensed matter?

$c^{\dagger}|\psi\rangle \quad$ (Adds an electron)

Majorana fermions in condensed matter?

$$
\begin{array}{cc}
c^{\dagger}|\psi\rangle & \text { (Adds an electron) } \\
c|\psi\rangle & \text { (Adds a hole) }
\end{array}
$$

Majorana fermions in condensed matter?

Majorana appears only through emergent excitations

Majorana fermions in condensed matter?

$$
\begin{gathered}
c^{\dagger}|\psi\rangle \quad \text { (Adds an electron) } \\
c|\psi\rangle \quad \text { (Adds a hole) } \\
C^{\dagger} \neq C
\end{gathered}
$$

Majorana appears only through emergent excitations

- -

Superconductors
 are natural platforms
 $f^{\dagger} \sim u c^{\dagger}+v c$

Majorana via topological superconductivity

"Spinless" 2D superconductor

Majorana via topological superconductivity

"Spinless" 2D superconductor

Majorana via topological superconductivity

"Spinless" 2D superconductor

Vortices bind Majorana zeromodes

One Majorana = "half" a usual fermion
Ground-state degeneracy + non-locality

$$
\begin{aligned}
& f_{A}=\gamma_{1}+i \gamma_{2} \\
& f_{B}=\gamma_{3}+i \gamma_{4}
\end{aligned}
$$

Vortices exhibit non-Abelian statistics

Majorana via topological superconductivity

"Spinless" 2D superconductor

Vortices bind Majorana zeromodes

"Spinless" ID
 superconductor

Majorana zero-modes localize at the ends of the system...
...but are they interesting \& useful? YES!

The basic challenge

"Spinless" ID, 2D superconductivity is hard to find
I.We live in 3D

The basic challenge

"Spinless" ID, 2D superconductivity is hard to find
I.We live in 3D

2. Electrons carry spin

The basic challenge

"Spinless" ID, 2D superconductivity is hard to find

I. We live in 3D

2. Electrons carry spin

3. Vast majority of superconductors form spin-singlet Cooper pairs

Two ways forward

I. Search for new compounds w/exotic superconductivity

Two ways forward

I. Search for new compounds w/exotic superconductivity

Matthias's 6th rule: Stay away from theorists!

Two ways forward

I. Search for new compounds w/exotic superconductivity

Matthias's 6th rule: Stay away from theorists!
2."Engineer" topological superconductivity from available materials

Theorists can be useful, particularly if methods involve weakly interacting electrons

Many roads to Majorana fermions in 2D

"Intrinsic"

Willet, Eisenstein, et al. (1987)
Moore \& Read (1991)
Bonderson, Kitaev, Shtengel (2006)
Stern \& Haperin (2006)

"Engineered"

Fu \& Kane (2008)

Sau, Tewari, Lutchyn, Das Sarma (2010)

...lots of
others

ID "spinless" superconductivity via edge states

I. By construction ID \& "spinless"
 II. Easy to make superconducting

ID "spinless" superconductivity via edge states

I. By construction ID \& "spinless"

II. Easy to make superconducting

Fu \& Kane 2009

ID "spinless" superconductivity via edge states

Ordinary Superconductor

Small number of 2D topological insulators

I. By construction ID \& "spinless"
II. Easy to make superconducting

Aside:Topological insulator in graphene?

Ist proposed topological
insulator, but gap is tiny:
$<0.01 \mathrm{meV}$

Kane \& Mele, PRL (2005)
Weeks, Hu, Alicea, Franz, Wu, PRX (20I I); Hu et al., arXiv:I206.4320

Aside:Topological insulator in graphene?

Ist proposed topological insulator, but gap is tiny: $<0.01 \mathrm{meV}$

Osmium

Experiments underway...

Majorana fermions in ID wires

ID spin-orbit-coupled wire (e.g. lnSb)

Majorana fermions in ID wires

ID spin-orbit-coupled wire (e.g. lnSb)

Majorana fermions in ID wires

Generates aID 'spinless' superconductor with Majorana fermions!

Outline

- Majorana fermions: what they are \& why they're interesting
- The quest for Majorana in the solid state
- Getting the most out of Majorana fermions
- Experimental status \& closing remarks

Harnessing non-Abelian statistics

Alicea, Oreg, Refael, von Oppen, Fisher, Nature Phys. 2010 Clarke, Sau, Tewari, PRB 2010
Halperin, Oreg, Stern, Refael, Alicea, von Oppen, PRB 201 I

Harnessing non-Abelian statistics

Alicea, Oreg, Refael, von Oppen, Fisher, Nature Phys. 2010 Clarke, Sau, Tewari, PRB 2010
Halperin, Oreg, Stern, Refael, Alicea, von Oppen, PRB 201 I

Harnessing non-Abelian statistics

Alicea, Oreg, Refael, von Oppen, Fisher, Nature Phys. 2010 Clarke, Sau, Tewari, PRB 2010
Halperin, Oreg, Stern, Refael, Alicea, von Oppen, PRB 201 I

Harnessing non-Abelian statistics

Alicea, Oreg, Refael, von Oppen, Fisher, Nature Phys. 2010 Clarke, Sau, Tewari, PRB 2010
Halperin, Oreg, Stern, Refael, Alicea, von Oppen, PRB 201 I

Harnessing non-Abelian statistics

Alicea, Oreg, Refael, von Oppen, Fisher, Nature Phys. 2010 Clarke, Sau, Tewari, PRB 2010
Halperin, Oreg, Stern, Refael, Alicea, von Oppen, PRB 201 I

Harnessing non-Abelian statistics

Alicea, Oreg, Refael, von Oppen, Fisher, Nature Phys. 2010 Clarke, Sau, Tewari, PRB 2010
Halperin, Oreg, Stern, Refael, Alicea, von Oppen, PRB 201 I

Harnessing non-Abelian statistics

Alicea, Oreg, Refael, von Oppen, Fisher, Nature Phys. 2010 Clarke, Sau, Tewari, PRB 2010
Halperin, Oreg, Stern, Refael, Alicea, von Oppen, PRB 201 I

Harnessing non-Abelian statistics

Alicea, Oreg, Refael, von Oppen, Fisher, Nature Phys. 2010 Clarke, Sau, Tewari, PRB 2010
Halperin, Oreg, Stern, Refael, Alicea, von Oppen, PRB 201 I

Harnessing non-Abelian statistics

Alicea, Oreg, Refael, von Oppen, Fisher, Nature Phys. 2010 Clarke, Sau, Tewari, PRB 2010
Halperin, Oreg, Stern, Refael, Alicea, von Oppen, PRB 201 I

Harnessing non-Abelian statistics

Alicea, Oreg, Refael, von Oppen, Fisher, Nature Phys. 2010 Clarke, Sau, Tewari, PRB 2010
Halperin, Oreg, Stern, Refael, Alicea, von Oppen, PRB 201 I

Harnessing non-Abelian statistics

Alicea, Oreg, Refael, von Oppen, Fisher, Nature Phys. 2010 Clarke, Sau, Tewari, PRB 2010
Halperin, Oreg, Stern, Refael, Alicea, von Oppen, PRB 201 I

Harnessing non-Abelian statistics

Alicea, Oreg, Refael, von Oppen, Fisher, Nature Phys. 2010 Clarke, Sau, Tewari, PRB 2010
Halperin, Oreg, Stern, Refael, Alicea, von Oppen, PRB 201 I

Harnessing non-Abelian statistics

Alicea, Oreg, Refael, von Oppen, Fisher, Nature Phys. 2010 Clarke, Sau, Tewari, PRB 2010
Halperin, Oreg, Stern, Refael, Alicea, von Oppen, PRB 201 I

Harnessing non-Abelian statistics

Alicea, Oreg, Refael, von Oppen, Fisher, Nature Phys. 2010 Clarke, Sau, Tewari, PRB 2010
Halperin, Oreg, Stern, Refael, Alicea, von Oppen, PRB 201 I

Harnessing non-Abelian statistics

Alicea, Oreg, Refael, von Oppen, Fisher, Nature Phys. 2010 Clarke, Sau, Tewari, PRB 2010
Halperin, Oreg, Stern, Refael, Alicea, von Oppen, PRB 201 I

Harnessing non-Abelian statistics

Alicea, Oreg, Refael, von Oppen, Fisher, Nature Phys. 2010 Clarke, Sau, Tewari, PRB 2010
Halperin, Oreg, Stern, Refael, Alicea, von Oppen, PRB 201 I

Harnessing non-Abelian statistics

Alicea, Oreg, Refael, von Oppen, Fisher, Nature Phys. 2010 Clarke, Sau, Tewari, PRB 2010
Halperin, Oreg, Stern, Refael, Alicea, von Oppen, PRB 201 I

Non-Abelian statistics possible using ID wires!

Harnessing non-Abelian statistics

Alicea, Oreg, Refael, von Oppen, Fisher, Nature Phys. 2010 Clarke, Sau, Tewari, PRB 2010
Halperin, Oreg, Stern, Refael, Alicea, von Oppen, PRB 201 I

Non-Abelian statistics possible using ID wires!

Blueprints for quantum computers

Need to supplement braiding with additional operations...

Hassler, Akhmerov, Hou, Beenakker (2010)

Hassler, Akhmerov, Beenakker (201I)

Sau, Tewari, Das Sarma (20I0)

Bonderson and Lutchyn (2010)

Outline

- Majorana fermions: what they are \& why they're interesting
- The quest for Majorana in the solid state
- Getting the most out of Majorana fermions
- Experimental status \& closing remarks

Signatures of Majorana Fermions in Hybrid Superconductor-Topological Insulator Devices
J. R. Williams, ${ }^{1}$ A. J. Bestwick, ${ }^{1}$ P. Gallagher, ${ }^{1}$ Seung Sae Hong, ${ }^{2}$ Y. Cui, ${ }^{3,4}$ Andrew S. Bleich, ${ }^{5}$ J. G. Analytis, ${ }^{2,4}$ I. R. Fisher,,${ }^{2,4}$ and D. Goldhaber-Gordon ${ }^{1}$

Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices

V. Mourik, ${ }^{1 *}$ K. Zuo, ${ }^{1 *}$ S. M. Frolov, ${ }^{1}$ S. R. Plissard, ${ }^{2}$ E. P. A. M. Bakkers, ${ }^{1,2}$ L. P. Kouwenhoven ${ }^{1} \dagger$

Evidence of Majorana fermions in an Al - InAs nanowire topological superconductor Anindya Das*, Yuval Ronen*, Yonatan Most, Yuval Oreg, Moty Heiblum\#, and Hadas Shtrikman

Observation of Majorana Fermions in a Nb-InSb Nanowire-Nb Hybrid Quantum Device
M. T. Deng, ${ }^{1}$ C. L. Yu, ${ }^{1}$ G. Y. Huang, ${ }^{1}$ M. Larsson, ${ }^{1}$ P. Caroff, ${ }^{2}$ and H. Q. Xu ${ }^{1,3, *}$

Observation of the fractional ac Josephson effect: the signature of Majorana particles

Leonid P. Rokhinson, ${ }^{1,2, *}$ Xinyu Liu, ${ }^{3}$ and Jacek K. Furdyna ${ }^{3}$
A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung, and X. Li Phys. Rev. Lett. 110, 126406 (2013)

Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices

V. Mourik, ${ }^{1 *}$ K. Zuo, ${ }^{1 *}$ S. M. Frolov, ${ }^{1}$ S. R. Plissard, ${ }^{2}$ E. P. A. M. Bakkers, ${ }^{1,2}$ L. P. Kouwenhoven ${ }^{1} \dagger$

Evidence of Majorana fermions in an Al - InAs nanowire topological superconductor Anindya Das*, Yuval Ronen*, Yonatan Most, Yuval Oreg, Moty Heiblum \#, and Hadas Shtrikman

Observation of Majorana Fermions in a Nb-InSb Nanowire-Nb Hybrid Quantum Device
M. T. Deng, ${ }^{1}$ C. L. Yu, ${ }^{1}$ G. Y. Huang, ${ }^{1}$ M. Larsson, ${ }^{1}$ P. Caroff, ${ }^{2}$ and H. Q. Xu ${ }^{1,3, *}$

Observation of the fractional ac Josephson effect: the signature of Majorana particles

Leonid P. Rokhinson, ${ }^{1,2, *}$ Xinyu Liu, ${ }^{3}$ and Jacek K. Furdyna ${ }^{3}$

Superconductor-Nanowire Devices from Tunneling to the Multichannel Regime:
Zero-Bias Oscillations and Magnetoconductance Crossover
H. O. H. Churchill, ${ }^{1,2}$ V. Fatemi, ${ }^{2}$ K. Grove-Rasmussen, ${ }^{3}$ M. T. Deng, ${ }^{4}$ P. Caroff, ${ }^{4}$ H. Q. Xu, ${ }^{4,5}$ and C. M. Marcus

Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices

V. Mourik, ${ }^{1 *}$ K. Zuo, ${ }^{\text {1* }}$ S. M. Frolov, ${ }^{1}$ S. R. Plissard, ${ }^{2}$ E. P. A. M. Bakkers, ${ }^{1,2}$ L. P. Kouwenhoven ${ }^{1} \dagger$

Evidence of Majorana fermions in an Al - InAs nanowire topological superconductor Anindya Das*, Yuval Ronen*, Yonatan Most, Yuval Oreg, Moty Heiblum\#, and Hadas Shtrikman

Observation of Majorana Fermions in a Nb-InSb Nanowire-Nb Hybrid Quantum Device

M. T. Deng, ${ }^{1}$ C. L. Yu, ${ }^{1}$ G. Y. Huang, ${ }^{1}$ M. Larsson, ${ }^{1}$ P. Caroff, ${ }^{2}$ and H. Q. Xu ${ }^{1,3, *}$

Observation of the fractional ac Josephson effect: the signature of Majorana particles

Leonid P. Rokhinson, ${ }^{1,2, *}$ Xinyu Liu, ${ }^{3}$ and Jacek K. Furdyna ${ }^{3}$

Detection via transport

Normal reflection

Insulator

Conventional
 Superconductor

Detection via transport

Andreev reflection

Insulator

Conventional
 Superconductor

Detection via transport

No Majoranas \quad Perfect normal reflection $\quad \square G=0$

Sengupta et al. (200 I); Bolech, Demler (2007); Law, Lee, Ng (2009); Fidkowski, Alicea, Lindner, Lutchyn, Fisher (20I2)

Experimental results

Mourik et al., Science 2012

$\underline{B \neq 0}$

Experimental results

$$
\underline{B}=0
$$

$\underline{B \neq 0}$

Mourik et al., Science 2012

Braiding on the horizon?

Mourik et al., Science 2012

"More is different"...

...even at the macroscale

Topological insulators
Non-Abelian anyons
Majorana fermions
Parafermions
Fibonacci
can be "engineered" by combining simple ingredients

Mong, Clarke, JA, Lindner, Fendley, Nayak, Oreg, Stern, Berg, Shtengel, Fisher, arXiv: I 307.4403

Thanks for your attention!

I. Beenakker, Annual Review of

Recent reviews:

Condensed Matter Physics 4,
II3 (2013)
2. Alicea, Reports on Progress in Physics 75, 07650 (2012)

Confirming non-Abelian statistics

I. Nucleate Majoranas from the vacuum
2. Check that fusing pairs you created returns the ground state
3. Exchange Majoranas

Confirming non-Abelian statistics

5. Can detect excitation using Josephson measurements
I. Nucleate Majoranas from the vacuum
2. Check that fusing pairs you created returns the ground state
3. Exchange Majoranas
4. Fusing pairs in same way as in 2 should now yield excited state with 50\% probability

