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Introduction

For more than a decade there has been a contro-

versy surrounding entropy in the Casimir effect.

This is most famously centered around the issue

of how to describe a real metal, in particular, the

permittivity at zero frequency. The latter deter-

mines the low-temperature and high temperature

corrections to the free energy, and hence to the

entropy.

UVA Condensed Matter Seminar, 11/6/14 – p.2/66



Drude vs. plasma

The Drude model, and general thermodynamic

and electrodynamic arguments, suggest that the

transverse electric (TE) reflection coefficient at

zero frequency for a good, but imperfect metal,

should vanish, while an ideal metal, or one de-

scribed by the plasma model (which ignores dis-

sipation) has this zero frequency reflection coeffi-

cient equal unity.
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3rd Law not violated

Taken at face value, the first, more realistic sce-

nario, means that the entropy would not vanish

at zero temperature, in violation of the Nernst

heat theorem, and the third law of thermodynam-

ics. However, subsequent careful calculations

showed that at very low temperature the free en-

ergy vanishes quadratically in the temperature,

thus forcing the entropy to vanish at zero temper-

ature.
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Negative entropy?

However, there would persist a region at low tem-

perature in which the entropy would be negative.

This was not thought to be a problem, since the

Casimir free energy does does not describe the

entire system of the Casimir apparatus, whose

total entropy must necessarily be positive. The

physical basis for the negative entropy region re-

mains mysterious.
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Geometric negative entropy

More recently, negative entropy has been dis-

covered in purely geometrical settings. Thus,

in considering the free energy between a per-

fectly conducting plate and a perfectly conduct-

ing sphere, it was found that when the distance

between the plate and the sphere is sufficiently

small, the room-temperature entropy turns nega-

tive, and that the effect is enhanced for smaller

spheres. For a very small sphere, we can use a

dipole approximation.
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Systematic study

The previous discussion suggests that this phe-

nomenon should be studied in a systematic way.

In this talk we consider the retarded Casimir-

Polder interactions between a small object, such

as a nanosphere or nanoparticle, possessing

anisotropic electric and magnetic polarizabilities,

and a conducting plate, and we analyze the con-

tributions to the free energy and entropy for the

TE and TM (transverse magnetic) polarizations of

the conducting plate.
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Conducting sphere

The case of a small conducting sphere above a

plate is recovered by setting the electric polariz-

ability, α, equal to a3, where a is the radius of the

sphere, and the magnetic polarizability, β, equal

to −a3/2. We also examine the free energy and

entropy between two such anisotropically polariz-

able nanoparticles.
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Findings

We find negative entropy not only as an inter-

play between TE and TM polarizations in the

plate, but even between a purely electrically po-

larizable nanoparticle and the TM polarization of

the plate, provided the nanoparticle is sufficiently

anisotropic. The previous negative entropy re-

sults are verified, and we show that even be-

tween electrically polarizable nanoparticles, neg-

ative entropy occurs when the product of the tem-

perature with the separation is sufficiently
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small, provided the nanoparticles are sufficiently

anisotropic. The interaction between two iden-

tical isotropic small spheres modeled as perfect

conductors gives a negative entropy region, but

not when they are described by the Drude model

(no magnetic polarizability); but the interaction

between an isotropic perfectly conducting sphere

and an isotropic Drude sphere gives negative en-

tropy. At room temperature, typically negative en-

tropy occurs for separations below a few microns.
UVA Condensed Matter Seminar, 11/6/14 – p.10/66



History

Negative entropy between an electrically polar-

izable atom and a conducting plate was dis-

cussed in the isotropic case several years ago

by Mostepanko et al. (2008) who also sketched

the extension to a isotropic magnetically po-

larizable atom (2009). The zero-temperature

Casimir-Polder interaction between atoms having

both isotropic electric and magnetic polarizabili-

ties was studied by Feinberg and Sucher (1968).
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History (cont.)

The temperature dependence for isotropic atoms

interacting only through their electric polarizability

was first obtained by McLachlan (1963). Barton

performed the generalization for the magnetic po-

larizability at finite temperature (2001). Haakh et

al. more recently discussed the magnetic Casimir-

Polder interaction for real atoms (2009). The

anisotropic case at zero temperature for the elec-

trical Casimir-Polder interaction was first given by

Craig and Power (1969).
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Outline

In this paper we consider anisotropic small ob-

jects, with the symmetry axis of the objects coin-

ciding with the direction between them or the nor-

mal to the plate, with both electric and magnetic

polarizability. Because we are interested in mat-

ters of principle, we work in the static approxima-

tion, so both polarizabilities are regarded as con-

stant, whereas most real atoms have very small,

and complicated, magnetic polarizabilities.
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Advantage of nanoparticles

We also are not concerned here with the fact that

achieving large anisotropies is likely to be diffi-

cult for real atoms because it may be much more

feasible to achieve the necessary anisotropies

with nanoparticles, such as conducting needles.

We use natural units ~ = c = kB = 1, and

Heaviside-Lorentz units for electrical quantities,

except that polarizabilites are expressed in con-

ventional Gaussian units.
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CP free energy: nanoparticle/plate

We start by considering an anisotropic
electrically and magnetically polarizable
nanoparticle a distance Z above a perfectly
conducting plate. We can take as our starting
point the multiple scattering formula for the
interaction free energy between two bodies

F12 =
1

2
Tr ln(1 − Γ0T

E
1 Γ0T

E
2 )

+
1

2
Tr ln(1 − Γ0T

M
1 Γ0T

M
2 )

−
1

2
Tr ln(1 + Φ0T

EΦ0T
M),
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Green’s dyadic

where the Γ0 is the free electric Green’s dyadic,

Γ0(r, r
′) = (∇∇−1∇2)G0(|r − r′|), G0(R) =

e−|ζ|R

4πR
,

in terms of the imaginary frequency ζ. The
auxilliary Green’s dyadic is

Φ0 = −
1

ζ
∇ × Γ0.

TE,M
1,2 are the electric and magnetic scattering op-

erators for the two interacting bodies.
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Single scattering approximation

For the case of a tiny object, it suffices to use the
single-scattering approximation, and replace the
scattering operator by the potential

TE
n = VE

n = 4παδ(r − R), TM
n = VM

n = 4πβδ(r − R),

for a nanoparticle at position R with electric

(magnetic) polarizability tensors α (β). The ap-

proximation being made here is that the nanopar-

ticle is a small object, and it is adequate to ignore

higher multipoles. That is justified if a, a charac-

teristic size of the particle, is a ≪ Z. UVA Condensed Matter Seminar, 11/6/14 – p.17/66



CP free emergy

Then we are left with the following formula for the
Casimir-Polder free energy between a
polarizable nanoparticle and a conducting plate,

Fnp = −2π Tr (αΓ0TpΓ0 + βΦ0TpΦ0) .

Here Tp is the purely electric scattering operator
for the conducting plate, which is immediately
written in terms of the Green’s operator Γ for a
perfectly conducting plate,

Γ0TpΓ0 = Γ − Γ0.
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α polarization of nanoparticle

It is well-known that the Green’s dyadic for a
perfectly conducting plate lying in the z = 0 plane
is for z > 0 given by the image construction

(Γ − Γ0)(r, r
′) = −Γ0(r, r

′ − 2ẑz′) · (1 − 2ẑẑ),

where the free Green’s dyadic is given above.
Explicitly, for R = r − r′,

Γ0(r, r
′) = −[1u(|ζ|R) − R̂R̂v(|ζ|R)]

e−|ζ|R

4πR3
,

u(x) = 1 + x + x2, v(x) = 3 + 3x + x2.
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CP energy,T 6= 0

Let us first consider zero temperature. Then, if
we ignore the frequency dependence of α, we
integrate over imaginary frequency, and we
immediately obtain the famous Casimir-Polder
result

EE
np = −

∫ ∞

−∞

dζ tr α · (Γ − Γ0)(R,R) = −
tr α

8πZ4
.

For nonzero T , we replace the integral by a sum,

∫ ∞

−∞

dζ

2π
→ T

∞
∑

m=−∞

, ζ → ζm = 2πmT.
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Anisotropic Nanoparticle

If we assume the principal axis of the
nanoparticle aligns with the direction normal to
the plate,

α = diag(α⊥, α⊥, αz), γ = α⊥/αz,

FE
np = −

3αz

8πZ4
f(γ, y),

f(γ, y) =
y

6
[(1 + γ)(1 − y∂y) + γy2∂2

y ]
1

2
coth

y

2

where y = 4πZT , where Z = separation.
UVA Condensed Matter Seminar, 11/6/14 – p.21/66



CP Entropy

The entropy is

SE
np = −

∂

∂T
FE

np =
3αz

2Z3

∂

∂y
f(γ, y),

so we define the scaled entropy by

s(γ, y) =
∂

∂y
f(γ, y).

For small (large) y,

s(γ, y) ∼
1

540
(1−2γ)y3+O(y5), s(γ, y) ∼

1

12
(1+γ).
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Negative entropy

The entropy vanishes at T = 0, and then starts

off negative for small y when γ > 1/2. In particu-

lar, even for an isotropic, solely electrically polar-

izable, nanoparticle, where γ = 1, the entropy is

negative for a certain region in y, as discovered by

Bezerra et al. The behavior of the entropy with γ is

illustrated in the following figure. For an isotropic

nanoparticle, the negative entropy region occurs

for 4πZT < 2.97169, or at temperature 300 K, for

distances less than 2 µm.
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Entropy atom-plate
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Scaled entropy s be-

tween a purely electrically polarizable nanoparti-

cle and a conducting plate. Bottom to top for large

ZT : γ = 0 (blue), 1/2 (red), 1 (yellow), 2 (green).
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Resecaled entropy

Most Casimir experiments are performed at room
temperature. Therefore, it might be better to
present the entropy in the form

SE
np =

3αz

2
(4πT )3s̃(γ, y), s̃(γ, y) = y−3s(γ, y),
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E and H polarizations of plate

To understand this phenomenon better, let us
break up the polarization states of the conducting
plate. For this purpose, it is convenient to use the
2 + 1-dimensional breakup of the Green’s dyadic.
Following the formalism, we find that the free
Green’s dyadic has the form ((dk⊥) = d2k⊥)

Γ0(r, r
′) =

∫

(dk⊥)

(2π)2
eik⊥·(r−r

′)⊥(E + H)(z, z′)
1

2κ
e−κ|z−z′|,

which readily leads to the representation for the

free energy for the nanoparticle-plate system
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Free energy particle/plate

FE = 2πT
∞

∑

m=−∞

∫

(dk⊥)

(2π)2
tr[α·(E − H)(Z, Z)]

1

2κ
e−2κZ ,

where κ2 = k2
⊥ + ζ2

m. Here the TE and TM
polarization tensors are, after averaging over the
directions of k⊥,

E = −
ζ2

2
1⊥, H =

κ2

2
1⊥ + (κ2 − ζ2

m)ẑẑ.
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TE contribution to F

Performing the elementary integrals and sums,
we get for the TE contribution to the free energy

FE
E = −

3αz

8πZ4
fE(γ, y), fE(γ, y) = γ

y3

12
∂2

y

(

1

2
coth

y

2

)

SE
E = −

∂

∂T
FE

E =
3αz

2Z3
sE(γ, y), sE(γ, y) =

∂

∂y
fE(γ, y)
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Large and small y = 4πZT

For large y, sE goes to zero exponentially,

sE(γ, y) ∼ −
γ

12
y2(y − 3)e−y, y ≫ 1,

while for small y,

sE(γ, y) ∼ −γ
y3

360
+ O(y5), y ≪ 1.

The transverse electric contribution to the en-

tropy, sE, is always negative.
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TM polarization

On the other hand, sH = s − sE is positive for
large y,

sH ∼
1 + γ

12
, y ≫ 1,

but can change sign for small y,

sH(γ, y) ∼
y3

540

(

1 −
1

2
γ

)

, y ≪ 1.

So sH can change sign for γ > 2; the total entropy

s can change sign for γ > 1/2. These features are

illustrated in the following figure.
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Plate-Nanoparticle Entropy
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The solid curves are

the total entropy, the short-dashed curves are for

the TM plate contribution, and the long-dashed

curves are for TE. Black: γ = 0, red: γ = 1/2,

blue: γ = 1, magenta: γ = 2.
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Entropy of purely electrical particle
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This illustrates that

even for a solely electrically polarizable nanopar-

ticle SH can turn negative for γ > 2. black: γ = 1,

red: γ = 10. Again: s: solid curves, sE: long-

dashed curves, and sH : short-dashed curves.
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Drude vs. plasma model

Note that there is no difference between a per-

fectly conducting plate and one represented by

the ideal Drude model, which differs from the for-

mer only by the exclusion of the TE m = 0 mode.

This is because this term does not contribute to

FE
E or to SE

E .
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β polarization of nanoparticle

Now we turn to the magnetic polarizability of the
nanoparticle, All we need is the scattering
operator for the conducting plate,

Tp(r, r
′) =

∫

(dk⊥)

(2π)2
eik⊥·(r−r

′)⊥
1

ζ2
(E − H)(z, z′)

·δ(z)e−κ|z′|.
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Green’s dyadic

Then the Green’s dyadic appearing there can be
written in terms of the polarization operators for
the plate as

Φ0 · Tp · Φ0(Z, Z) =

∫

dz′ dz′′
∫

(dk⊥)

(2π)2

(

−
1

ζ
∇ × (E + H)(Z, z′)

1

2κ
e−κ|Z−z′|

)

1

ζ2
(E − H)(z′, z′′)δ

(

−
1

ζ2
∇

′′ × ∇
′′ ×−1

)

e−κ|z′′|

(

−
1

ζ
∇

′′ × (E + H)(z′′, Z

·
1

2κ
e−κ|z′′−Z|

)

.
UVA Condensed Matter Seminar, 11/6/14 – p.35/66



Simplification

The intermediate wave operator here annihilates
the following Green’s dyadic except on the plate:

(

−
1

ζ2
∇

′′ × ∇
′′ ×−1

)

e−κ|z′′| · ∇′′ × (E + H)

=

(

1

ζ2
∇′′2 − 1

)

e−κ|z′′|
∇

′′ × (E + H)

= −
2κ

ζ2
δ(z′′)∇′′ × (E + H).
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Properties of Polarization Operators

Now we integrate by parts and use the identities

∇
′ × (E − H)(z′, z′′) × ∇

′′ = −ζ2(E − H),

E(z, z′) · E(z′, z′′) = −ζ2
E(z, z′′),

H(z, z′) · H(z′, z′′) = −ζ2
H(z, z′′),

E(z, z′) · H(z′, z′′) = 0.
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Magnetic Green’s dyadic

In this way we find the magnetic Green’s dyadic
appearing in the formula for the magnetic part of
the Casimir-Polder energy to be

Φ0TpΦ0(Z, Z) = −

∫

(dk⊥)

(2π)2
(E − H)(Z, Z)e−2κZ ,

which is just negative of the corresponding ex-

pression for the electric Green’s dyadic.
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Total Free Energy

Thus the expression for the magnetic
polarizability contribution is obtained from the
free energy for the electric polarizability by the
replacement α → −β, and the total free energy
for the nanoparticle-plate system is given by

F = 2πT
∞

∑

m=−∞

∫

(dk⊥)

(2π)2
tr[(α − β) · (E − H)(Z, Z)]

·
1

2κ
e−2κZ .
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Electric/Magnetic Equality

This simple relation between the electric and
magnetic polarizability contributions was noted
earlier. In particular, for the interesting case of a
conducting sphere, the previous results apply,
except multiplied by a factor of 3/2. In that case,
the limiting value of the entropy is

S(T ) ∼ −
4

15
(πaT )3, 4πZT ≪ 1.
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CP interaction of 2 nanoparticles

Let us now consider two nanoparticles, one
located at the origin and one at R = (0, 0, Z). Let
the nanoparticles have both static electric and
magnetic polarizabilities αi, βi, i = 1, 2. We will
again suppose the nanoparticles to be
anisotropic, but, for simplicity, having their
principal axes aligned with the direction
connecting the two nanoparticles:

αi = diag(αi
⊥, αi

⊥, αi
z), βi = diag(βi

⊥, βi
⊥, βi

z).

The methodology is very similar to that explained

in the particle/plate discussion. UVA Condensed Matter Seminar, 11/6/14 – p.41/66



Electric polarizability

We start with the interaction between two
electrically polarizable nanoparticles. The free
energy is

FEE = −
T

2

∞
∑

m=−∞

tr[4πα1 · Γ0(R) · 4πα2 · Γ0(R)],

where the free Green’s dyadic is given above. A
simple calculation yields (y = 4πZT )

FEE = −
23

4πZ7
α1

zα
2
zf(γ, y).
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Scaled free energy

where

f(γ, y) =
y

23

[

4

(

1 − y∂y +
1

4
y2∂2

y

)

+ 2γ

(

1 − y∂y +
3

4
y2∂2

y −
1

4
y3∂3

y +
1

16
y4∂4

y

)]

Here γ = γ1γ2, where γi = αi
⊥/αi

z.
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CP Entropy

The entropy is

SEE =
23α1

zα
2
z

Z6
sEE(γ, y), sEE(γ, y) =

∂

∂y
f(γ, y).

The asymptotic limits are

sEE(γ, y) ∼
2 + γ

23
, y ≫ 1,

sEE(γ, y) ∼
1

2070
(1 − γ)y3, y ≪ 1,

so even in the pure electric case there is a region

of negative entropy for γ > 1, illustrated below.UVA Condensed Matter Seminar, 11/6/14 – p.44/66



Transverse electric polarizabilities
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sEE

The entropy

sEE(γ, y) for two anisotropic purely electrically

polarizable nanoparticles with separation Z and

temperature T . When γ = γ1γ2 > 1 the entropy

can be negative. Blue: γ = 0, red: 1, yellow: 2.
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EM cross term

For the “interference” term between the magnetic
polarization of one nanoparticle and the electric
polarization of the other, we compute the free
energy from the third term in the master equation

FEM = −
1

2
tr[Φ0 · 4πα1 · Φ0 · 4πβ2] + (1 ↔ 2).

This is easily worked out using the following
simple form of the Φ0 operator

Φ0(R) = −
ζm

4πZ3
R × (1 + ζmZ)e−|ζm|Z , Z = |R|.
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Free energy

The result for the free energy is

FEM =
7

4πZ7
(α1

⊥β2
⊥ + β1

⊥α2
⊥)g(y),

which is normalized to the familiar zero
temperature result, where

g(y) =
y

14

(

y2∂2
y − y3∂3

y +
1

4
y4∂4

y

)

1

2
coth

y

2
.
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Entropy

The entropy is

SEM = −
7

Z6
(α1

⊥β2
⊥+β1

⊥α2
⊥)sEM , sEM(y) =

∂g(y)

∂y
.

This is always negative, vanishes exponentially
fast for large y, and also vanishes rapidly for
small y,

sEM ∼ −
y5

7056
.
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General results

We can present the total entropy for two
nanoparticles having both electric and magnetic
polarizabilities as follows,

S =
1

Z6

[

23α1
zα

2
zs

EE(γ1
αγ2

α, y) + 23β1
zβ

2
zs

EE(γ1
βγ

2
β, y)

− 7(α1
zβ

2
zγ

1
αγ2

β + β1
zα

2
zγ

1
βγ

2
α)sEM(y)

]

,

where sEE and sEM are given by above.
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Small y = 4πZT

For small y, the leading behavior of the entropy is

S =
y3

90R6
[α1

zα
2
z(1 − γ1

αγ2
α) + β1

zβ
2
z (1 − γ1

βγ
2
β)]

+
y5

5040R6
[α1

zα
2
z(4 + 7γ1

αγ2
α) + β1

zβ
2
z (4 + 7γ1

βγ
2
β)

+ 5(α1
zβ

2
zγ

1
αγ2

β + β1
zα

2
zγ

1
βγ

2
α) + O(y7).
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Graphs

In the following six figures we present graphs of

the entropy for the case of identical nanoparticles,

for simplicity, α1
z = α2

z, β1
z = β2

z , γ1
α = γ2

α, γ1
β = γ2

β.

In the first figure we show the entropy for isotropic

nanoparticles with different ratios of magnetic to

electric polarizabilities; negative entropy appears

when the ratio is smaller than about −1/8. This is

a nonperturbative effect. Thus, perfectly conduct-

ing spheres, β/α = −1/2, exhibit S < 0.
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Entropy of identical nanoparticles
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Entropy of two iden-

tical isotropic nanoparticles (γα = γβ = 1) for dif-

ferent values of r = β/α. Purple: r = 1, green: 0

, yellow: −1/8, red: −1/2 (red), −2 (blue).
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Anisotropic electric polarizabilities
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Here the identical

nanoparticles have equal values of αz = βz,

and γβ = 1, but different values of the electric

anisotropy. γα = 0 (green), 1 (yellow), 2 (red),

4 (blue), respectively.
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Equal anisotropies
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Here the identical

nanoparticles have equal electric and magnetic

polarizabilities, and equal anisotropies. γ = 0

(green), 1 (yellow), 2 (red), 4 (blue), respectively.
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Perfectly conducting nanoparticles

The case of a conducting sphere has β = −α/2.

We examine this situation in the following figure,

for different magnetic anisotropies, and in next fig-

ure, for different electric anisotropies. In this case

the leading term in S vanishes at γ = 1, so the

appearance of negative entropy for γ ≤ 1 is non-

perturbative. In fact, the boundary values for the

two cases are γβ = 0.5436 and γα = 0.7427, re-

spectively. For the latter case, this is illustrated in

the third figure.
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Identical conducting spheres
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The case of two

identical conducting spheres where αz = −2βz,

with electrical isotropy, but magnetic anisotropy

γβ = 0 (yellow), 1 (red), 2 (blue), reading from

top to bottom.
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Conducting, electrically anisotropic nanoparticles
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The case of two

identical conducting nanoparticles where αz =

−2βz, with magnetic isotropy, but electric

anisotropy γα = 0 (blue), 1 (red), 2 (yellow), read-

ing from top to bottom in the middle.
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Nonperturbative negative entropy
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Two identical

nanoparticles with βz = −αz/2, appropriate

for a conducting sphere, isotropic magnetically,

γα = 0.6 (magenta), 0.743 (dashed blue), 0.8

(short dashed red), 1 (black).
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Conducting and Drude nanoparticles

An interesting case is the interaction of a perfectly

conducting nanoparticle with a Drude nanoparti-

cle, by which we mean that the latter has vanish-

ing magnetic polarizability. In the next figure we

consider the electric anisotropies to be the same,

while in the following figure we show how the en-

tropy changes as we vary the anisotropy of the

magnetic polarizability of the perfectly conducting

sphere. For isotropic spheres there is always a

region of negative entropy.
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Conducting/Drude nanopaticles

1 2 3 4 5 6 7

-0.2

0.0

0.2

0.4

0.6

4 Π T Z

s

Interaction entropy

between a perfectly conducting nanoparticle,

β1 = −1
2α1, and a Drude nanoparticle with α2 =

α1, β2 = 0. γβ = 0, γα1 = γα2. Green: γα = 0.8,

purple: 0.91, yellow: 0.95, blue: 1.0, and red: 1.1.
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Conducting/Drude spheres,= α’s
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Interaction entropy

between a perfectly conducting nanoparticle,

β1 = −1
2α1, and a Drude nanoparticle with α2 =

α1, β2 = 0. γα = 0. Green: γβ1 = 0.5, purple:

0.66, yellow: 0.8, blue: 1, red: 1.1.
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Conclusions

In this talk we have studied purely geometrical as-

pects of the entropy that arise from the Casimir-

Polder interaction, either between a polarizable

nanoparticle and a conducting plate, or between

two polarizable nanoparticles. We consider the

simplified long distance regime where we may re-

gard both the electric and magnetic polarizabili-

ties of the nanoparticles as constant in frequency.

Thus, throughout we are assuming that the sepa-

rations Z ≫ a.
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Conclusions (cont.)

It has been known for some time that negative

entropy can occur between a purely electrically

polarizable isotropic nanoparticle and a perfectly

conducting plate. Here we consider both electric

and magnetic polarization for both the nanopar-

ticle and the plate. Negative entropy frequently

arises, but requires interplay between electric and

magnetic polarizations, or anisotropy, in that the

polarizability of the nanoparticles must be differ-

ent in different directions.
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Perturbative/nonperturbative effects

Interestingly, although in some cases the neg-

ative entropy is already contained in the lead-

ing low-temperature expansion of the entropy, in

other cases negative entropy is a nonperturba-

tive effect, not contained in the leading behavior

of the coefficients of the low temperature expan-

sion. What we observe here mirrors what has

been found in, for example, calculations of the en-

tropy between a finite sphere and a plate.

UVA Condensed Matter Seminar, 11/6/14 – p.64/66



Summary

We summarize our findings in the following Table,

which, we again emphasize, refer to the dipole

approximation, appropriate in the long-distance

regime, Z ≫ a. Surprisingly, perhaps, negative

entropy is a nearly ubiquitous phenomenon: Neg-

ative entropy typically occurs when a polarizable

nanoparticle is close to another such particle or to

a conducting plate. This is not a thermodynamic

problem because we are considering only the in-

teraction entropy, not the total entropy.
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Summary Table

Two nanoparticle
or particle/plate Negative entropy?

E/E S < 0 occurs for γα > 1

E/M S < 0 always
PC/PC S < 0 for γα > 0.74 or γβ > 0.54

PC/D S < 0 for γα > 0.91 or γβ > 0.66

E/TE plate S < 0 always
E/TM plate S < 0 for γα > 2

E/PC or D plate S < 0 for γα > 1/2
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