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QED is the most successful and best verified physics theory.

- Observables are computed via perturbation theory in o = e*/he = 1/137 .
- Measurements impressively match calculations.

- Is there any new physics left to understand and observe?

*Yes, strong field effects!

- Where to look for them?

- Bound states of nuclei of large charge Ze!

- In calculations involving bound states a also appears in the Za combination.

- Even though a << 1, Za may not be...

- What happens if Za > 1(£ > 137)? Non-perturbative effects!

- Pomeranchuk&Smorodinsky (1945), Gershtein&Zel’dovich (1969): vacuum
becomes unstable with respect to creation of electron-positron pairs; positrons
leave physical picture while the fermion space charge (“vacuum” electrons)
remains near the nucleus screening its charge.

- @Greiner et al. (1969), Popov (1970): vacuum condensation begins at a critical
charge Z close to 7170.

- But Z> 170 nuclei are not available! How to observe the effect?

- Slowly colliding U nuclei have combined £ = 184 exceeding 170!
- Experiments (1978-1999, GSI, Germany) failed.



These issues are still worth pursuing...

- Because these kinds of problems have condensed matter counterparts:

+ Materials are available: narrow-band gap semiconductors (/nSb type) and Weyl
semimetals (very recently, 2014, observed in Na3Bi and (Cds;Ass ).

-+ Material parameters are such as

Outline

- Critical charge problem in QED and condensed matter physics.
- Supercritical regime: Thomas-Fermi theory and its solution - prediction of

nearly-universal observable charge.

- Conclusions.



Critical charge in QED: heuristic argument for the Dirac-

Kepler problem

What is the ground-state energy of an electron in the field of charge Ze?
Classical energy: e =cy/p? +m2c? — 2762
The uncertainty pI’InCIp|e T 2 h/p Charge measured in natural units of 1/a

. /
Combine: e(p) 2 ¢ (\/p2 + m2c? — zp) .z =Z«
Minimize with respect to free parameter p: Classical .l/t radius

Do = %,TO ~ pﬂo ~ )\ : 12_22 , )\ — miec — 7;;4 Compton wavelength

The lowest (ground-state) energy: ¢, = m.c?v/1 — 22

Bohr radius

Consequences /

z << 1- non-relativistic H-like ion of size \/z=agp/Z .
z — 1-0 - ground-state sharply localized, the ground-state energy vanishes.
Analysis becomes meaningless for z > z. =1 - mass independent?

What about the Weyl-Kepler (massless electron) problem ?



Critical charge in QED... continued...

The problem is fully characterized by the Compton wavelength A and
dimensionless charge z. Dimensional analysis dictates that if there is a critical
z, it cannot depend on A, thus implying mass-independence of z. ~ 1.

The z >1 anomaly persists in the Weyl-Kepler problem: ¢'(p) ~ pc(1 — z)
z < 1 - particle delocalized, no bound states.
z > 1- sharp localization, infinitely negative ground-state energy.

What does it all mean?

This is a strong field limit of the Schwinger effect: creation of electron-positron
pairs in vacuum in a uniform electric field: the work of the field to separate the
constituents of the pair over Compton wavelength equals the rest energy of the
pair, eEg\ ~ m.c® , or

E < Eg - pairs created by tunneling; vacuum is in a metastable state.
E > FEg - pairs created spontaneously; vacuum is absolutely unstable.

- For the Coulomb problem the instability sets in when Ze/\? ~ E5 which again
predicts z. >~ 1.



Connection to quantum-mechanical “fall to the center”
effect

- Conservation of energy for classical non-relativistic electron of energy £ and
angular momentum M moving in a central field U(r) determines the range of
motion:

M2
p? =2m.E — 2m.U(r) — — >0, p? =p2 + M?*/r?
r M2
+ The particle reaches the origin (falls to the center) if lim (r°U(r)) < — Syl

- For M=0 the fall occurs for potential more attractive than —1/r=.
- “Introduce” quantum mechanics via Langer substitution: M? — h*(l +1/2)* .

- Smallest M?* = h*/4 (zero-point motion).
h2

SMeT

+ The fall occurs for potentials more attractive than U.(r — 0) = — 5

- If this is the case, there is no lower bound on the spectrum.



“Fall to the center” of relativistic particle
Conservation of energy: & = c\/p2 + M2/r2 + m2c2 + U(r)

Bound states: —m.c?> < £ < m.c?

- Instability with respect to pair creation: & < —Mmec’

- Range of motion at lower bound & = —m.c”:

1
p? = 3 (U*(r) 4+ 2m.c’U(r)) — — >0

- If U(r) diverges at the origin, the fall to the center occurs if lin% (rU(r)) < —Mec.

- Classically (M=0) this occurs for potential that is more attractive than the

Coulomb potential.
- Quantum-mechanically (A = 1/2) the fall occurs for potentials more attractive

than he
Uc O —
(T - ) 2r

- Compare with the Coulomb potential U = —Ze*/r — 2. = Z.ao = 1/2 : correct
for spinless particle but misses 7/2 for the Dirac particle due to the electron

spin.



“Fall to the center” of relativistic particle... continued

- Compare non-relativistic and relativistic (at £ = —m._c?) expressions for the
range of motion:
2 M2 2 1
py =2me€ —2mU(r) — — >0 vs p; = —
(&

(U*(r) 4+ 2m.c’U(r)) — — >0

CQ
- Relativistic problem is equivalent to a non-relativistic problem with zero total
energy and effective potential

U~ M*?
Uerr(r) = —Qmig —U(r) + o - extra terms due to spin in the Dirac case
- For the Kepler problem U(r) = —Ze?/r  the particle is always attracted at
small distances and repelled at large distances.

- For the Dirac-Kepler problem the role of spin terms can be (approximately)

summarized in 7 02 ﬁ2(1 B 22)
Ueff (T) — 7| 2

r 2Mmer

- The fall to the center occurs for z > 7; the particle is confined to central region

of size Mz2 =1
R., = (=" — 1)
2z

- If nuclei were point objects, the Periodic Table would end at Z=137...
- Finite nuclear size: critical Z moves upto 170 ( ).




Semi-classical picture
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Spontaneous pair creation begins when the ground-state energy reaches the
boundary of lower continuum, ¢, = —m.c?* .

Semi-classically the size of the space charge region [R.. is the radius where

modified upper continuum m.c* + U(r) meets unmodified lower continuum

—mec?,i.e. U(R,.) = —2mc”.

This is the amount of energy needed to create a pair - positron escapes to
infinity, electron remains near the nucleus.

Accounting for finite nuclear size complicates the problem; fortunately
dimensional analysis allows to anticipate the results of (1970+).



Critical charge in modified Dirac-Kepler problem

What is the critical charge of vacuum instability for finite nuclear size a ?
mersonsiarays: = () o 20 11 (5) = 7 (")
Dimensional analysis: zc = N) M le=I\V) T 3 r )

- Since z. =1 for a=0, then f(y — 0) = 1. For the Weyl-Kepler ( m. =0 )

problem the critical charge is unity even in the presence of cutoff scale a!

- As j, — 0, Planck’s constant must drop out — f(y — o) >~y or z. ~a/A. The
vacuum becomes unstable when e (0) = 2m.c*. For the uniformly charged
ball model of the nucleus this translates into f(y — co) — 4y/3.

- The Fermi formula: a = 0.61r.Z2'/3 = 0.61\a?/32'/3.

. Substitute into f: 2. = f (0.61a2/3z§/ 3).

- For the electron A >> a; the small argument limit of f(y) (Qquantum mechanics)
dominates, critical Zis slightly larger than 737 and weakly model-dependent.

- For the muon (200 times heavier) A << a; the large argument limit of f(y)
My

3/2
(classical physics) dominates, Z(E“) ~ ( ) ~ 3000— model-dependent.

Me



Condensed matter (CM) connection: QED vacuum is a
dielectric!

- Excitations: electron-hole pairs (CM) => electron-positron pairs (QED).

- Band gap (CM) => combined rest energy of the electron-positron pair (QED).

- Zener tunneling in a uniform electric field (CM) => Schwinger effect (QED).

- Is there a CM counterpart to the Z > 170 vacuum instability? Yes, moderately

charged, Z > 10, impurity region can trigger formation of space charge.

- Single band => effective mass approximation => non-relativistic Schrodinger

equation => impurity states =>H-like problem of non-relativistic QM.
effective mass approximation fails to explain deep states

formed near multi charged impurity centers, vacancies etc. - trapping of both
electrons and holes by highly-charged recombination centers etc. These states
could be associated with neither conduction nor valence band.

two-band approximation well-obeyed in narrow-band gap
semiconductors (NBGS) of the InSb type is needed; the low-energy electron-
hole dispersion law is “relativistic”: . qucion band Bandgap.  |“Speed of light

e(p) = _Q(A/Q)2 + v2p?, i = 27}21%2

Valence band Effective mass




NBGS parameter values

Electrons and holes are very “light”, m ~ 0.01m., and “slow”, v ~ 4.3 x 10™°¢;
their band gap A ~ 0.1eV is seven orders of magnitude smaller than the rest

energy of the electron-positron pair. Large field analog QED effects are
significantly more pronounced and readily realizable!
The material “fine structure” constant

e? 1 1
0= —> -~ —
hve TE 10

Dielectric constant

(i) for z = Za < 1 the impurity states are given by the spectrum of the
Dirac-Kepler problem (encompasses the theory of shallow states); (i) z> 1
regime describes recombination center with “collapsed” ground state.

Critical charge
R, 2e?

a h 2hv
e =1(%5) A—Tm—f—z—m”mv RG—TE—AJ”’"

Compton wavelength Classical electron radius

Electrons and holes are significantly more “quantum” than their QED cousins!

No need to account for lattice structure.
. Zener’s field Ez = A /ehv ~ 10°V/em, smaller by 10! than Schwinger’s field!




NBGS parameter values... continued

CM “Fermi formula”, a = 1.3R.Z'/? = 1.3Aa*/32'/% which corresponds to the
external (impurity) charge density n.,; = 10°°cm™> set by 1 eV range of
applicability of relativistic dispersion law.
Critical charge equation is nearly identical to its QED counterpart:

Ze = f (1.3042/3%/3)
We are again in quantum mechanics dominated regime: 7. ~ 1/a ~ 10 .
Critical cluster size: a. ~ 3nm .
Z > 10 impurity clusters with sizes in excess of several nm are more common

objects than Z > 170 nuclel!

1970): prediction of Weyl Semimetals (WS); they
have the gapless limit of the NBGS dispersion law, ¢(p) = +vp . These would
realize massless version of QED where any field is strong!

In 2014 WS were discovered in NasBi: and CdsAss .

In WS Z. =1/a ~ 10 independent of the size of the impurity region.



Summary

At modest Z > 10 electrons are promoted from valence band to form a space
charge around impurity cluster; the holes leave the physical picture.

The properties of the space charge vary with Zand a and are determined by
interplay of attraction to the impurity (promoting creation of space charge) and
the electron-electron repulsion combined with the Pauli principle (limiting the
creation of space charge).

Z < Z.:no space charge; single-particle description suffices.

Z slightly exceeds Z. : very few electrons are promoted to the conduction
band; single -particle description is a good starting point, interactions can be

accounted for perturbatively ( , 1971).
7 > Z.. the number of screening electrons is large and electron-electron
interactions cannot be ignored (numerical: , 1975+, analytic:

, 1976+; some interesting physics was overlooked in both of these
studies).

- The physics inthe Z > Z. limit exhibits a large degree of universality.
- Solution to the WS problem plays a central role in understanding the NBGS/
QED case.



Thomas-Fermi theory

| | | r')dV’
- Physical electrostatic potential: p(r) = pezt(r) — — / ’I._I./,

- External (impurity) potential: Ayt = —4mencyt/€, Pext = — for r>a .
€T

- Electron number density n(r) is only present within the region of space charge:
ep(r) > A, n(r)>0
- Radius of space charge region R,. > a : ep(Rs.) = A, n(Ry.)=0.

- Outside the space charge region, n=0, and Oblservable charge
Qooe 1 262 1
— : > RSC = (Joo—— = = OOR «—— Classical electron radius
€r g 2 ¢ eA 2 ¢

In WS case, R. = oo, the electron shell extends all the way to infinity, R,. = oc.
In “natural” units of charge 2R,

:Qooa:

A<— Compton wavelength

~ Impurity region

<4——— Space charge




Thomas-Fermi theory... continued

Creation of electron-hole pairs is a “chemical reaction” e + h == 0 with condition

of equilibrium
9 ,LLe‘I_Mh:Ov/}Le:\/(A/2)2+U2p%’_6¢7:¥h:A/2

Electron chemical potential Hole chemical potential

6m4n(r) t/3
* The Ferm| momentum: DE (I‘) — h ( gAJ/DegeneracyfactorQZ

. v [ ep(r) € 3/2 2ga’ — .
Comb|ne: n(r) — E . 62 [690(1') — A] , Y = . < oupling constan

e = —A means screening is incomplete; only in the WS case A =0 is the
screening complete. e [ n(r)dV’
Apply the Laplacianto  ©(r) = @eze(r) — -

€ r—r/|
+ Relativistic Thomas-Fermi equation ( ):
€p . €p € N 3/2
\V& (—) = — 4T Nyt + V< (e — A) ;
e e e?

\\ /



Impurity region

« For nes: = 102°em ™2, a 10-nm impurity region contains Z = 400 bare charge
which is significantly larger than the critical charge of 70.

- To first approximation mesoscopic impurity region may be viewed as charged
half-space:

d? 3/2
72 (6:30) = — AT Neqt(2) +7{%€%(69@ — A)} Meat(x < 0) = 3Z/41ma>, nege(x > 0) = 0
- Deeply inside the source region local neutrality n = n.,; holds:

1/3

90(33%_00)590—00%2 N
- The source boundary is a perturbation to constant density and potential;

assume the effectis weak, o = ¢_ (1 — ¢), ¢ << 1, and linearize about
Y = p_ (this can be justified):

d2¢ 2 —1 2\—1/6
@ — K — O, Iy ~ (’}/Z ) a )« Debye screening length

- ~Z? parameterizes degree of screening: concept of the screening length
applied to finite-sized object is only applicable in the regime of strong screening,
i.e. when vZ%2 > 1 .

» Local neutrality is only violated near the x = 0 boundary within the screening
length. Net charge: Q(r < a) ~ k™ 'a*(Z/a®) ~ Z(yZ?)~Y/6 .




Regimes of screening in practical terms

The cross-over charge yZ* ~1: 7, ~~~1/2.

Condensed matter and QED coupling constants y are vastly different: v ~ 10~
(CM) versus v ~ 10~ (QED).

Then Z, ~ 30 (CM) versus Z, ~ 3000 (QED).

- In condensed matter setting both the regimes of weak, 10 < Z < 30 , and
strong screening, Z > 30 , are experimentally accessible.

In QED setting studying space charge around highly charged nuclei is

completely academic.

Back to the analysis of the regime of strong screening...



Outside of the impurity region; spherically-symmetric
charge distribution: Weyl semimetal

Outside of the source region we need to solve the full nonlinear equation

@ (%) (%)

- Seek solution in the form ep(r) _ lx (f)
& T a
- Via Gauss’s theorem y is related to the charge Q(r) within a sphere of radius r:
d(ep/e r
i) = -2 )y, =t

or a

- Substitution:

X"(€) = x'(0) = vx°
- For {>> 1 the second-order derivative is negligible; then Q=y or in natural units

g=Qa=xa, and for arbitrary screening strength the nonlinear Thomas-Fermi
equation acquires the form

dg _  2g9a s
d¢ 3w 1
- This is identical to the (RG) equation for the physical charge in

QED reflecting the effects of vacuum polarization! Physics is different.



Properties of the “flow” equation
@ — 294 3 ¢ = In "
d/ 3 1 a
Applicable for r >> a for arbitrary screening strength; in the strong screening
regime it is applicable beyond several source radii.
It exhibits the Landau “zero charge” effect: for any “initial” value of g the
system “flows” to zero charge fixed point g = 0 as {— 0. Alternatively for r fixed

complete screening is reached in the point source limit a — 0.
Solution (log accuracy)

2, \ 3T
a(r) = dgaln(r/a)

p(r) = . = i\/ 3 o
ery/2yIn(r/a)  2er |\l ga’ln(r/a)

n(r) = — ! R S Y (%)
d7r3 2vIn(r/a)]3/2  167r3 | ga? a

The hallmark of the solution is its near universality - weak logarithmic
dependence on the source size a.




Spherically-symmetric charge distribution: NBGS/QED

- Now we need to look at the equation

dq 290 (5 2qr 3/2 /1"
- = _ — In —
a3z \! " n) a

- g(r) decreases slower than its WS counterpart ( A = oo ); when the rhs = 0 we
reach the edge of the space charge region, g acquires its observable value ¢
and stops changing thereatfter.

- The outcome can be understood by “terminating” the WS flow equation at the
scale corresponding to the edge of the space charge region /5. = In(Rg./a) > 1
and Identlfylng Q(gsc) — (o .

37T
TS

dgaln(gecA/a)
-+ For a fixed there exists a nearly universal lower limit on the observable charge;

In the point source limit there is complete screening.
- Approximation solution \/

3T R.. — QOOA
4galn(A/a(ga)t/2)” 7% 2

do :Qoo@%

+ With logarithmic accuracy Q. ~ a3/ ~ 30 ( Qs =~ 3000 in QED ) and
R.. ~ 30nm .



Numerical solution of the full problem

100}
Z = 2000
Z = 200
10 Z = 20
Z =2

r/a 10

Confirms the analysis and clearly demonstrates the existence
of universal charge in the large Z limit.



Weak screening regime ~7°? < 1 and synthesis

-+ Here the concept of the Debye screening length looses it meaning; the number
of the electrons residing within the impurity region (vZ?) is small; most of them
are outside. As the strength of screening increases, more and more of them
move inside.

- Interpolation solution for the WS case:

2
z ze

() = ) =TT (g ) ()

1 4 (4gaz?/3m)In(r/a)

n(r) = I
67273 [1 + (4dgaz2/3mw)In(r/a)|3/2

These have log accuracy and match both the r >> a “zero-charge” limit and
perturbation theory in ~Z*. If zis viewed more broadly as the net charge within
the source region, these equation encompass all the regimes of screening.

- Deviations from the Coulomb law become substantial at distances

r> Ry ~ a€37r/4goz22

This is the screening radius within the space charge of Weyl electrons. As the
strength of screening increases from small to large ~Z7? ~ gaz?, the screening
radius decreases from a very large value to the scale comparable to the source
size.



Narrow band-gap semiconductors and QED

- Solution for charge ) 22
oo ™ 11 (4dgaz? /3m) In(qeo N/ a)
iIncreases from small to large values, the initial ¢« = 2 growth
slows down eventually saturating (for a fixed) at nearly-universal value.
For realistic « < Z'/3 and Zlarge the Q..(Z) dependence is a nearly
universal slowly increasing function of Z. This explains (and goes beyond)
numerical data of

- As V7% ~ gaz?

- Unfortunately not all is well... Solve for tr12e bare charge z:
2 4o
11— (4gaq2, /3m) In(gee A /a)

Z

- For 4~ fixed the denominator vanishes for finite a given by

~ —37/4gaq”

- For a <ap, the bare charge is imaginary! This is certainly unacceptable. This
is the “Landau pole” familiar from QED. The Landau pole is the direct
consequence of the Landau zero charge. Even though the reality of zero
charge in QED is still debatable (I think!), here it is clearly an artifact...



Range of applicability of the Thomas-Fermi theory

The observable charge ¢, is the critical charge of the single-particle problem
for a charged region of scale £sc which is due to both the external charge and
that of the space charge. Then dimensional analysis dictates:

=1 (55) . S 0) =1, Sy 00 =

Only in the classical limit R,. > A does this agree with Thomas-Fermi result!
For the WS case, /A = o, the semiclassical condition can never be met!
Prediction of complete screening in WS is an artifact of the Thomas-Fermi
approximation; observable charge in the WS case is ¢, = 1 or, in physical
units, ., = 1/a, the inverse fine structure constant.
Thomas-Fermi analysis is applicable provided ¢oc > 1 ( Qo > 1/a).
Prediction of nearly universal observable charge in the NBGS/QED cases
survives as Q. ~ 1/a%/? and a << 1 (this would not work in graphene).
The size of the space charge region in the WS case can be estimated by
“terminating” the “zero charge” solution at the scale corresponding to g = 7:
¢>(r) = 31 /4galn(r/a) ~ 1 — R, ~ ae™st/9°
- This Weyl ion could be detectable in a large g material.



Conclusions

Large field QED effect such as vacuum condensation can be observed in CM
setting (in narrow band-gap semiconductors) where required charges are
moderate and readily achievable. Here the new effect of nearly universal
observable charge is predicted.

Designing controllable experiment to see these effects remains challenging.
One possibility is spectroscopy of electron and hole drops in completely
compensated NBGS where large charges are also formed ( ,
1972).

- Weyl semimetals realize massless version of QED. Here the Thomas-Fermi
prediction of complete screening is actually incorrect. This flaw however does
not affect the prediction of nearly universal charge in the NBGS case. The
observable charge in the WS case is always given by the inverse of material’s
fine structure constant.

- Thomas-Fermi theory overlooks the critical charge effect. But there is a simple
physics motivated fix. This improved theory predicts that the vacuum
condensation (in the WS case) is a Kosterlitz-Thouless transition (whether this
IS true remains to be seen).



TABLE I. Summary of properties of electrons in vacua of
quantum electrodynamics (QED), narrow band-gap semiconductors

(NBGS), and Weyl semimetals (WS).

Media QED NBGS WS
Electrons free band Dirac band Weyl
Mass m, m >~ 10"%m, 0
Degeneracy g 2 > 2 = 2
Dielectric e =1 e ~ 10 e >~ 10
constant
Limiting speed c v 4x 107 v~ 107%c
Band gap or 2m,c? 1077 x 2m,c?
rest energy
Fine structure ;—i ~ % ,% ~ é ;% ~ 0.1
constant «
Coupling o~ 1077 BE <103 Be < g
constant y
Classical radius 7, >~ 107° nm R, ~ 1 nm 00
of electron
Compton A 2>~ 107 nm A ~ 10 nm 00
wavelength
Schwinger or Eg~10"° -  E;~10° - 0

Zener field




How to improve the accuracy of the Thomas-Fermi
analysis in the WS case (speculation)

- Thomas-Fermi theory (naturally) overlooks the critical charge effect. But there
IS a simple fix...
- Compare

1 1 M?2

PF = 2 ((e@)? —epA) ws pi = 2 (U*(r) + 2mecU(r)) — —

- Quantum-mechanical fall to the center is missing but easy to reintroduce (by
hand). This modifies the “flow” equation into

dg 200, 9 \3/2

A 29T a2 )3/

dl 3 (4 )
- This resolves difficulties of “zero charge”, preserves Thomas-Fermi findings and
also predicts that the vacuum instability is a Kosterlitz-Thouless type transition:

R (37T 2 )
ce = @ €X
P 2g()é\/22—1




