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• QED is the most successful and best verified physics theory.!
• Observables are computed via perturbation theory in                                  .!
• Measurements impressively match calculations. !
• Is there any new physics left to understand and observe?!
• Yes, strong field effects!!
• Where to look for them?!
• Bound states of nuclei of large charge Ze!!
• In calculations involving bound states α also appears in the Zα combination. !
• Even though α << 1, Zα may not be…!
• What happens if Zα > 1(Z > 137)?  Non-perturbative effects!!
• Pomeranchuk&Smorodinsky (1945), Gershtein&Zel’dovich (1969):  vacuum 

becomes unstable with respect to creation of electron-positron pairs; positrons 
leave physical picture while the fermion space charge (“vacuum” electrons) 
remains near the nucleus screening its charge. !

• Greiner et al. (1969), Popov (1970):  vacuum condensation begins at a critical 
charge Z close to 170.  !

• But Z > 170 nuclei are not available!  How to observe the effect?!
• Slowly colliding U nuclei have combined Z = 184 exceeding 170!!
• Experiments (1978-1999, GSI, Germany) failed.

� = e2/�c = 1/137



These issues are still worth pursuing…

• Because these kinds of problems have condensed matter counterparts:  

impurity states in semiconductors.!
• Materials are available:  narrow-band gap semiconductors (InSb type) and Weyl 

semimetals  (very recently, 2014, observed in                 and                  ).!
• Material parameters are such as critical charge is modest and readily 

achievable.!

!

Outline !
!

• Critical charge problem in QED and condensed matter physics.!
• Supercritical regime:  Thomas-Fermi theory and its solution - prediction of 

nearly-universal observable charge.!
• Conclusions.

Cd3As2Na3Bi



Critical charge in QED:  heuristic argument for the Dirac-
Kepler problem!

!
• What is the ground-state energy of an electron in the field of charge Ze?!
• Classical energy:                                                         !
• The uncertainty  principle:                                                                        !
• Combine:                                                                                                     !
• Minimize with respect to free parameter p:                       "

                                                                                                       "
• The lowest (ground-state) energy:                                    !

Consequences  !
• z << 1- non-relativistic H-like ion of size                        .                             !
• z →1-0 - ground-state sharply localized, the ground-state energy vanishes.!
• Analysis becomes meaningless for                      - mass independent?    !
• What about the Weyl-Kepler (massless electron) problem ?                                                                                        !

!
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Critical charge in QED… continued…!
• The problem is fully characterized by the Compton wavelength λ and 

dimensionless charge z.  Dimensional analysis dictates that if there is a critical 
z, it cannot depend on λ, thus implying mass-independence of            . !

!
• The z >1 anomaly persists in the Weyl-Kepler problem:                             !
• z < 1 - particle delocalized, no bound states.!
•  z > 1-  sharp localization, infinitely negative ground-state energy.!

What does it all mean?!

This is a strong field limit of the Schwinger effect: creation of electron-positron 
pairs in vacuum in a uniform electric field:  the work of the field to separate the 
constituents of the pair over Compton wavelength equals the rest energy of the 
pair,                        , or "
                                                                                 "
!
•               - pairs created by tunneling; vacuum is in a metastable state.!
•               - pairs created spontaneously; vacuum is absolutely unstable.!
• For the Coulomb problem the instability sets in when                       which again 

predicts            .!
!
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Connection to quantum-mechanical “fall to the center” 
effect!

!
• Conservation of energy for classical non-relativistic electron of energy      and 

angular momentum M moving in a central field U(r) determines the range of 
motion:!

!
!

• The particle reaches the origin (falls to the center) if                                        . !
!
• For M=0 the fall occurs for potential more attractive than           . !
!
• “Introduce” quantum mechanics via Langer substitution:                                  . !
!
• Smallest                     (zero-point motion).!
!
• The fall occurs for potentials more attractive than                                         .   !
!
• If this is the case, there is no lower bound on the spectrum.!
!
• Repeat the argument for relativistic particle.!
!
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“Fall to the center” of relativistic particle!
• Conservation of energy:  !
• Bound states:  "
• Instability with respect to pair creation:  !
• Range of motion at lower bound                    :!

!
• If U(r) diverges at the origin, the fall to the center occurs if                                 .   !
• Classically (M=0) this occurs for potential that is more attractive than the     

Coulomb potential.!
• Quantum-mechanically (               ) the fall occurs for potentials more attractive 

than !
!

• Compare with the Coulomb potential                                                      :  correct 
for spinless particle but misses 1/2  for the Dirac particle due to the electron 
spin. !

• The Dirac case cannot be fully understood semi-classically but further insight is 
still possible…                      !
!
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“Fall to the center” of relativistic particle… continued "
!

• Compare non-relativistic and relativistic (at                   ) expressions for the 
range of motion:!

!
!
• Relativistic problem is equivalent to a non-relativistic problem with zero total 

energy and effective potential!
!
                                                                                                                                   !
• For the Kepler problem                                  the particle is always attracted at 

small distances and repelled at large distances.!
• For the Dirac-Kepler problem the role of spin terms can be (approximately) 

summarized in!
                                                                                                                           !
!
• The fall to the center occurs for z > 1;  the particle is confined to central region 

of size !
!
• If nuclei were point objects, the Periodic Table would end at Z=137…"
• Finite nuclear size: critical Z moves up to 170 (Greiner et al., Popov). !
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defining three regions (cf. Fig. 1): I) & > &+ = V(r) + 1; 
11) c <E- = ~ ( r )  - 1; III) the classically forbidden region 
E, < c  <E+. In the regions I, I1 the square of the momen- 
tum i s  positive, p2(r)> 0; the region I corresponds to the 
upper continuum, the region 11 corresponds to the lower 
one. 

We make the following clarification. Let ~ ( r )  = const 
throughout the region of r values. Then the lower con- 
tinuum should be understood as the region between the 
curves E- = V - 1 and V- W, a s  W- .o. Similarly, i f  
~ ( r )  i s  a smooth function of r, one should understand by 
lower continuum the region between V(r) - 1 and V(r) - W (the dotted line in Fig. 1) with subsequent taking of 
the limit W- a. As i t  should be, the charge density in 
the lower continuum at each point r does not change on 
account of adding the potential V(r). 

When V(r) becomes smaller than - 2 the discrete lev- 
els go over into the lower continuum. If these levels 
were not occupied by electrons (naked nucleus) there 
appears the possibility of a tunneling transition from 
the lower continuum into the upper one. " The barr ier  
to be penetrated (corresponding to the classically for- 
bidden region 111 with p2(r) <0) has an exponentially 
small penetrability. The electrons of the vacuum shell 
represent a degenerate relativistic Fermi gas and fill 
all the cells of phase space with momenta p c p , ,  = ( v2 
+ 2 ~ ) " ~ .  This value of p,,, follows from (1) for c = c,, 
= - 1. The electron density n,(r) of the vacuum shell 
is related to the maximal momentum by the well known 
relation 

The spatial distribution of electrons is determined by 

FIG. 1. The deformation of the upper and lower continua in a 
strong external field (the boundaries of the continua are 
shaded). The electrons belonging to the vacuum shell of a 
supercritical atom fill the cross-hatched region. The states 
below the curve &,(r) = V(r)  - 1 form the unobservable Dirac 
sea. The quantity W has the meaning of a cutoff energy, the 
introduction of which i s  necessary in order to give meaning to 
the difference between two divergent integrals for the charge 
density. All energies are measured in unita of m&'. 

the relativistic Thomas-Fermi equation 

where p,(r) i s  the proton density. In the sequel we as- 
sume n,(r) = n,e(R - r ) ,  where n, = 3 2 / 4 ~ ~ ~  = Zn0/d - - 0. 25m3, z/A- 0.5; no is the usual nuclear density: 
no = 3/4aro3; R = r&'I3 is the nuclear radius yo = 1.1 F. 
As  can be seen from (2), ne(r) i s  nonzero only in the re- 
gion of space where V(r) < - 2. Therefore the vacuum 
shell has a finite radius r = r,. The boundary conditions 
for the equation (3) a r e  the following: 

The latter condition follows from the fact that V(r) 
= - Z1e2/r for r 2 r,; Z, = Z - N, is the atomic charge for 
an external observer. 

We note that retaining the term 2V together with V 2  in 
the expressions (2) and (3) is legitimate in all regions of 
r where i t  represents a correction larger than g-I rela- 
tive to V2 (cf. the Appendix for details). 

In the next section we describe a more detailed der- 
ivation of Eq. (3) which allows one to obtain the distribu- 
tion of the electrons of the shell with respect to angular 
momenta. In Sec. 3 i t  is shown that for Ze2 >> 1 the con- 
tribution of vacuum polarization does not change equa- 
tion (3). Further we consider the properties of solutions 
of this equation: in Sec. 4 for Ze3 << 1 (weak screening), 
in Sec. 5, for ze3 >> 1 (supercharged nucleus, extreme 
screening). This situation can be discussed analytically. 
In Sec. 6 we list the results of numerical calculations in 
the intermediate region Ze3- 1, which allows us to join 
the two limiting cases. Section 7 contains a generaliza- 
tion and refinement of the results. 

In this paper we use a system of units with A= c = me 
= 1, e2 = 1/137, and we introduce the notations: g = Ze2, 
where Z is the charge of the naked nucleus, A$ is the 
number of electrons in the vacuum shell, Z, = Z - AT, is 
the charge of the system at large ( r >  r,) distances, 2' 
denotes the total charge situated inside the nucleus. 

2. DERIVATION OF THE RELATIVISTIC THOMAS- 
FERMl EQUATION FROM THE DlRAC EQUATION 

The Dirac equatidn for the radical functions G and F 

can be reduced by means of the substitution G = (1 + & - v ) ' ~ ~ ~ ~ ~ ~  to a form analogous to the Schrodinger equa- 
tion: 

xrf+2 (E-C) X=O. (6) 

Here E = (c2 - 1)/2, E is the electron energy, U =  U(r, &) 
is the effective 
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• Spontaneous pair creation begins when the ground-state energy reaches the 
boundary of lower continuum,                     .                      !

• Semi-classically the size of the space charge region             is the radius where 
modified upper continuum                       meets unmodified lower continuum !

              , i. e.                              . !
• This is the amount of energy needed to create a pair - positron escapes to 

infinity, electron remains near the nucleus.!
• Accounting for finite nuclear size complicates the problem;  fortunately 

dimensional analysis allows to anticipate the results of Popov et al.(1970+).!
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Critical charge in modified Dirac-Kepler problem!
!

• What is the critical charge of vacuum instability for finite nuclear size a ?"
• Dimensional analysis:                                                                           .!
• Since             for a=0, then                       .  For the Weyl-Kepler (              )   

problem the critical charge is unity even in the presence of cutoff scale a! !
• As           , Planck’s constant must drop out                                                .  The 

vacuum becomes unstable when                         .  For the uniformly charged 

ball model of the nucleus this translates into                               .!
• The Fermi formula:                                                     .!
• Substitute into f :                                     .!
• For the electron λ >> a; the small argument limit of f(y) (quantum mechanics) 

dominates, critical Z is slightly larger than 137 and weakly model-dependent.!
• For the muon (200 times heavier) λ << a;  the large argument limit of f(y) 

(classical physics) dominates,                                            model-dependent. !
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Condensed matter (CM) connection:  QED vacuum is a 
dielectric!!

!
• Excitations: electron-hole pairs (CM) => electron-positron pairs (QED).!
• Band gap (CM) => combined rest energy of the electron-positron pair (QED).!
• Zener tunneling in a uniform electric field (CM) => Schwinger effect (QED).!
• Is there a CM counterpart to the Z > 170 vacuum instability?  Yes, moderately 

charged, Z > 10, impurity region can trigger formation of space charge.  !
• Single band => effective mass approximation => non-relativistic Schrödinger 

equation => shallow impurity states =>H-like problem of non-relativistic QM. !
• Keldysh (1963):  effective mass approximation fails to explain deep states 

formed near multi charged impurity centers, vacancies etc. - trapping of both 
electrons and holes by highly-charged recombination centers etc.  These states 
could be associated with neither conduction nor valence band. !

• Keldysh:  two-band approximation well-obeyed in narrow-band gap 
semiconductors (NBGS) of the InSb type is needed;  the low-energy electron-
hole dispersion law is “relativistic”:!

!
!
!
                                                                                              !
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NBGS parameter values!
!

• Electrons and holes are very “light”,                    , and “slow”,                          ; 
their band gap                    is seven orders of magnitude smaller than the rest 
energy of the electron-positron pair.  Large field analog QED effects are 
significantly more pronounced and readily realizable! !

• The material “fine structure” constant !
!

!
!

!
• Keldysh: (i) for z = Zα < 1 the impurity states are given by the spectrum of the 

Dirac-Kepler problem (encompasses the theory of shallow states);  (ii) z > 1 
regime describes recombination center with “collapsed” ground state.   !

• Critical charge                     !
!
 !

!
• Electrons and holes are significantly more “quantum” than their QED cousins! 

No need to account for lattice structure.!
• Zener’s field                                          , smaller by         than Schwinger’s field!!
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NBGS parameter values… continued!

• CM “Fermi formula”,                                                   which corresponds to the 
external (impurity) charge density                              set by 1 eV range of 
applicability of relativistic dispersion law.!

• Critical charge equation is nearly identical to its QED counterpart:                 !
!

• We are again in quantum mechanics dominated regime:                          .!
• Critical cluster size:                  .!
•  Z > 10 impurity clusters with sizes in excess of several nm are more common 

objects than Z > 170 nuclei!!
• Abrikosov&Beneslavskii (1970): prediction of Weyl Semimetals (WS);  they 

have the gapless limit of the NBGS dispersion law,                     .  These would 
realize massless version of QED where any field is strong!  !

• In 2014 WS were discovered in               and                 .!
!
• In WS                          independent of the size of the impurity region.!
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Summary !
!

• At modest Z > 10 electrons are promoted from valence band to form a space 
charge around impurity cluster;  the holes leave the physical picture.!

• The properties of the space charge vary with Z and α and are determined by 
interplay of attraction to the impurity (promoting creation of space charge) and 
the electron-electron repulsion combined with the Pauli principle (limiting the 
creation of space charge).!

•             : no space charge; single-particle description suffices.!
• Z  slightly exceeds       :  very few electrons are promoted to the conduction 

band;  single -particle description is a good starting point, interactions can be 
accounted for perturbatively (Zel’dovich and Popov, 1971). !

•              :  the number of screening electrons is large and electron-electron 
interactions cannot be ignored (numerical:  Greiner et al., 1975+, analytic:  
Migdal et al.,1976+;  some interesting physics was overlooked in both of these 
studies). !

•  It will be demonstrated that …!
• The physics in the                limit exhibits a large degree of universality.!
• Solution to the WS problem plays a central role in understanding the NBGS/

QED case.        "
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Thomas-Fermi theory!
!

• Physical electrostatic potential:                                                    .                                                     !

• External (impurity) potential:                                                                         .!
• Electron number density n(r) is only present within the region of space charge:!
!
• Radius of space charge region               :                                             .!
• Outside the space charge region, n=0, and!
!
!
• In WS case,              , the electron shell extends all the way to infinity,               .!
• In “natural” units of charge !
!
!
!
!
!
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Thomas-Fermi theory… continued!
!

• Creation of electron-hole pairs is a “chemical reaction” e + h ⇄ 0 with condition 
of equilibrium  !

!
!
!
• The Fermi momentum:                                                          !
!

 !
•  Combine:!
!

•                    means screening is incomplete;  only in the WS case              is the 
screening complete.!

•  Apply the Laplacian to                                                     .!
!

• Relativistic Thomas-Fermi equation (Greiner et al., Migdal et al.):!
!
!

 !
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Impurity region!
!

• For                             , a 10-nm impurity region contains Z ≈ 400 bare charge 
which is significantly larger than the critical charge of 10.  !

• To first approximation mesoscopic impurity region may be viewed as charged 
half-space: "

!
!
• Deeply inside the source region local neutrality                holds:!
!
!
• The source boundary is a perturbation to constant density and potential;  

assume the effect is weak,                                           , and linearize about !
                   (this can be justified):!
 !
!
•        parameterizes degree of screening:  concept of the screening length 

applied to finite-sized object is only applicable in the regime of strong screening, 
i. e.  when                 .!

• Local neutrality is only violated near the x = 0 boundary within the screening 
length. Net charge:                                                                  .                                                                 !
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Regimes of screening in practical terms!
!

• The cross-over charge               :                     .!
•  Condensed matter and QED coupling constants γ are vastly different:                 

(CM) versus                 (QED).  !
•  Then               (CM) versus                   (QED). !
• In condensed matter setting both the regimes of weak,                       , and 

strong screening,             , are experimentally accessible.!
•  In QED setting studying space charge around highly charged nuclei is 

completely academic. 
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Outside of the impurity region; spherically-symmetric 
charge distribution:  Weyl semimetal!

!
• Outside of the source region we need to solve the full nonlinear equation!
 !
!

• Seek solution in the form!
!
• Via Gauss’s theorem 𝝌 is related to the charge Q(r) within a sphere of radius r :!
!
!

• Substitution: !
!

• For ℓ>> 1 the second-order derivative is negligible;  then Q=𝝌 or in natural units 
q=Qα=𝝌α, and for arbitrary screening strength the nonlinear Thomas-Fermi 
equation acquires the form!

!
!

• This is identical to the Gell-Mann-Low (RG) equation for the physical charge in 
QED reflecting the effects of vacuum polarization!  Physics is different.  !
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Properties of the “flow” equation !
!
!

• Applicable for r >> a for arbitrary screening strength;  in the strong screening 
regime it is applicable beyond several source radii.!

• It exhibits the Landau “zero charge” effect:  for any “initial” value of q the 
system “flows” to zero charge fixed point q = 0 as ℓ→∞.  Alternatively for r fixed 
complete screening is reached in the point source limit a → 0.     !

Solution (log accuracy)!
!
!
!
!
!
!
!

• The hallmark of the solution is its near universality - weak logarithmic 
dependence on the source size a.
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Spherically-symmetric charge distribution:  NBGS/QED!
!

• Now we need to look at the equation !
!

!
!
• q(r) decreases slower than its WS counterpart (             );  when the rhs = 0 we 

reach the edge of the space charge region, q acquires its observable value    
and stops changing thereafter.!

• The outcome can be understood by “terminating” the WS flow equation at the 
scale corresponding to the edge of the space charge region                           
and identifying                      :!
!

 !
• For a fixed there exists a nearly universal lower limit on the observable charge;  

in the point source limit there is complete screening.!
• Approximation solution!
!

!
• With logarithmic accuracy                               (                    in QED ) and                !
                       .!
!

dq

d�
= �2g�

3�

�
q2 � 2qr

�

�3/2

, � = ln
r

a

� =�
q�

�sc = ln(Rsc/a)� 1
q(�sc) = q�

q2
� �

3�

4g� ln(q��/a)

q� = Q�� �

�
3�

4g� ln(�/a(g�)1/2)
, Rsc =

q��
2

Q� � ��3/2 � 30
Rsc � 30nm

Q� � 3000



Numerical solution of the full problem

Z = 2

Z = 20
Z = 200
Z = 2000

Confirms the analysis and clearly demonstrates the existence 
of universal charge in the large Z limit. 



Weak screening regime                  and synthesis�Z2 � 1
• Here the concept of the Debye screening length looses it meaning;  the number 

of the electrons residing within the impurity region (       ) is small;  most of them 
are outside.  As the strength of screening increases, more and more of them 
move inside.!

• Interpolation solution for the WS case:!
!
!
!
!
!
!
These have log accuracy and match both the r >> a “zero-charge” limit and 
perturbation theory in         .  If z is viewed more broadly as the net charge within 
the source region, these equation encompass all the regimes of screening.!
• Deviations from the Coulomb law become substantial at distances !
!
!
This is the screening radius within the space charge of Weyl electrons.  As the 
strength of screening increases from small to large                     , the screening 
radius decreases from a very large value to the scale comparable to the source 
size.  !
!

q2(r) =
z2

1 + (4g�z2/3�) ln(r/a)

�Z3

�(r) =
Ze

�r
�

1 + (4g�z2/3�) ln(r/a)

n(r) =
gz3

6�2r3[1 + (4g�z2/3�) ln(r/a)]3/2

�Z2

r > Rscr � ae3�/4g�z2

�Z2 � g�z2



Narrow band-gap semiconductors and QED
• Solution for charge  !
!
• As                      increases from small to large values, the initial               growth 

slows down eventually saturating (for a fixed) at nearly-universal value.!
•  For realistic                 and Z large the              dependence is a nearly 

universal slowly increasing function of Z.  This explains (and goes beyond) 
numerical data of Greiner et al.             

q2
� �

z2

1 + (4g�z2/3�) ln(q��/a)
�Z2 � g�z2 q� = z

a � Z1/3 Q�(Z)

• Unfortunately not all is well…  Solve for the bare charge z:"
!
!
!
• For           fixed the denominator vanishes for finite a given  by !
!
!
• For                the bare charge is imaginary!  This is certainly unacceptable.  This 

is the “Landau pole” familiar from QED.  The Landau pole is the direct 
consequence of the Landau zero charge.  Even though the reality of zero 
charge in QED is still debatable (I think!), here it is clearly an artifact…                                     !

!

z2 ⇡ q21
1� (4g↵q21/3⇡) ln(q1⇤/a)

q1

ap ' ⇤q1e�3⇡/4g↵q21

a < ap



Range of applicability of the Thomas-Fermi theory!
• The observable charge         is the critical charge of the single-particle problem 

for a charged region of scale        which is due to both the external charge and 
that of the space charge.  Then dimensional analysis dictates: !

!
!

• Only in the classical limit                 does this agree with Thomas-Fermi result!!
• For the WS case, Λ = ∞,  the semiclassical condition can never be met!!
• Prediction of complete screening in WS is an artifact of the Thomas-Fermi 

approximation;  observable charge in the WS case is              or, in physical 
units,                   , the inverse fine structure constant. !

• Thomas-Fermi analysis is applicable provided               (                   ).!
• Prediction of nearly universal observable charge in the NBGS/QED cases 

survives as                        and α << 1 (this would not work in graphene). !
• The size of the space charge region in the WS case can be estimated by 

“terminating” the “zero charge” solution at the scale corresponding to q ≃ 1: !
!
• This Weyl ion could be detectable in a large g material.

q�
Rsc

q� = f

�
Rsc

�

�
, f(y � 0)� 1, f(y ��) � y

Rsc � �

q� = 1
Q� = 1/�

q� � 1 Q� � 1/�

Q� � 1/�3/2

q2(r) = 3�/4g� ln(r/a) � 1� Rsc � aeconst/g�



Conclusions!
• Large field QED effect such as vacuum condensation can be observed in CM 

setting (in narrow band-gap semiconductors) where required charges are 
moderate and readily achievable.  Here the new effect of nearly universal 
observable charge is predicted. "

• Designing controllable experiment to see these effects remains challenging.  
One possibility is spectroscopy of electron and hole drops in completely 
compensated NBGS where large charges are also formed (Shklovskii & Efros, 
1972).!

• Weyl semimetals realize massless version of QED.   Here the Thomas-Fermi 
prediction of complete screening is actually incorrect.  This flaw however does 
not affect the prediction of nearly universal charge in the NBGS case. The 
observable charge in the WS case is always given by the inverse of material’s 
fine structure constant.      !

• Thomas-Fermi theory overlooks the critical charge effect.  But there is a simple 
physics motivated fix.  This improved theory predicts that the vacuum 
condensation (in the WS case) is a Kosterlitz-Thouless transition (whether this 
is true remains to be seen).!

!
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structures.19 The zero energy gap of WS implies that in a
uniform electric field the creation of a space charge of Weyl
fermions is spontaneous. The dielectric constant of WS is of
order 10 with e2/h̄v ≃ 1,3 thus leading, like in the NBGS case,
to Zc ≃ 10 independent of the size of the impurity region.

NBGS and WS are condensed matter systems where
analogs of the atomic collapse of QED can be experimen-
tally detected. Related phenomena can be also observed in
graphene. Indeed, graphene possesses the linear dispersion
law analogous to that of WS and microscopic parameters
similar to NBGS which leads to a small value for the
critical charge for promotion of electrons from the valence
band to the conduction band. Such a problem has been
considered elsewhere20 and experimental signatures of the
“atomic collapse” in graphene were recently reported.21 The
graphene problem is mathematically different from what we
discuss, because graphene is a two-dimensional semimetal
embedded in a three-dimensional space.

Below, we will determine the ground-state properties
of NBGS and WS in the presence of a finite-size positive
Coulomb impurity (a negative charge leads to the same dis-
cussion due to particle-hole symmetry). The arguments given
above imply that at modest Z electrons are promoted from the
valence band to form a space charge around the impurity while
the holes leave the physical picture; the properties of the space
charge vary with Z and α and are determined by the interplay of
attraction to the impurity (promoting the creation of electron-
hole pairs), and electron-electron repulsion combined with
the Pauli principle (limiting the creation of the space charge).
The QED analysis of the physical properties of the space
charge was carried out in two limits: (i) Z close to Zc, where
there are very few electrons promoted to the conduction band
for which the single-particle picture is a good starting point;1

and (ii) Z ≫ Zc, where the number of screening electrons
is large and the electron-electron interactions cannot be
ignored.5,6

Below we demonstrate that the physics in the Z ≫ Zc

limit exhibits a large degree of universality. Although we
are mostly concerned with the NBGS setting, our findings
are equally applicable in QED as both problems share the
same mathematics; a solution to the WS problem benefits the
understanding of the NBGS/QED case.

To help the readers orient themselves between three phys-
ically different manifestations of the problem and to provide
them with a condensed matter-QED translation dictionary, in
Table I, we summarized pertinent properties of electrons in
vacua of QED, NBGS, and WS. The entries not yet specified
are (i) the fermion degeneracy factor g, which is 2 in QED,
while in NBGS it is twice the number of Dirac valleys (22)
within the first Brillouin zone; an isotropic valley-independent
limiting velocity v is assumed for simplicity. In the WS
case, g counts the number of Weyl points within the first
Brillouin zone: g = 24 in pyrochlore iridates18 and g = 2 in a
topological insulator multilayer.19 (ii) The coupling constant
γ plays a role analogous to that of the fine structure constant
α in polarization effects, as will be made clear below. (iii) The
Zener field EZ is the semiconductor analog of the Schwinger
field (6) defined as

EZ = #2

eh̄v
. (26)

TABLE I. Summary of properties of electrons in vacua of
quantum electrodynamics (QED), narrow band-gap semiconductors
(NBGS), and Weyl semimetals (WS).

Media QED NBGS WS

Electrons free band Dirac band Weyl
Mass me m ≃ 10−2me 0
Degeneracy g 2 ! 2 ! 2
Dielectric ϵ = 1 ϵ ≈ 10 ϵ ≃ 10

constant
Limiting speed c v ≈ 4 × 10−3c v ≃ 10−2c

Band gap or 2mec
2 10−7 × 2mec

2 0
rest energy

Fine structure e2

h̄c
≈ 1

137
e2

h̄vϵ
≈ 1

6
e2

h̄vϵ
≃ 0.1

constant α

Coupling 4α3

3π
≈ 10−7 2gα3

3π
" 10−3 2gα3

3π
" 10−3

constant γ

Classical radius re ≃ 10−6 nm Re ≃ 1 nm ∞
of electron

Compton λ ≃ 10−4 nm ' ≃ 10 nm ∞
wavelength

Schwinger or ES ≃ 1016 V
cm EZ ≃ 105 V

cm 0
Zener field

Comparing the values of the fields ES and EZ explains why
NBGS are so well suited to study strong field QED effects;
the situation is even more favorable in WS where due to the
zero band gap, an arbitrarily weak field is “strong” as far as
the space charge phenomena are concerned.

IV. THOMAS-FERMI THEORY

Since for Z ≫ Zc a large number of electrons are in the
conduction band, the properties of the system consisting of
the impurity and its interacting cloud of electrons can be
understood semiclassically with the help of the TF theory.5,6

The main object of the latter is a physical electrostatic potential
ϕ(r) felt by an electron that is due to both the electrostatic
potential of the impurity ϕext(r) and that of the space charge
characterized by the number density n(r):

ϕ(r) = ϕext(r) − e

ϵ

∫
n(r′)dV ′

|r − r′|
. (27)

The external potential ϕext(r) is a pseudopotential that repre-
sents the perturbation of the system caused by the impurity;
even though ϕext is not entirely of electrostatic origin, we
will define △ϕext = −4πenext/ϵ. We assume that the impurity
charge density enext(r) is spherically symmetric and localized
within a mesoscopic region of size a so that for r ! a the
potential ϕext(r) reduces to a purely Coulomb form ϕext(r) =
Ze/ϵr of a net charge Ze. There are several reasons why
the impurity region has to be mesoscopic in size. First of all,
in practice charged atomic scale defects cannot have Z # 10.
Second, a large charge localized within a small region implies a
large electrostatic potential. However, all our analysis is based
on approximating the exact dispersion law by its low-energy
limit (22). For that to remain valid, the order of magnitude of
the potential within the impurity region should not exceed a
volt. Like in graphene, this corresponds to the electron volt
energy scale, which is significantly smaller than the width of
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How to improve the accuracy of the Thomas-Fermi 
analysis in the WS case (speculation)!

!
• Thomas-Fermi theory (naturally) overlooks the critical charge effect.  But there 

is a simple fix…!
• Compare!
!
!
• Quantum-mechanical fall to the center is missing but easy to reintroduce (by 

hand).  This modifies the “flow” equation into !
!

!
• This resolves difficulties of “zero charge”, preserves Thomas-Fermi findings and 

also predicts that the vacuum instability is a Kosterlitz-Thouless type transition:!
!

p2
F =

1
v2

�
(e�)2 � e��

�
vs p2

r =
1
c2

�
U2(r) + 2mec

2U(r)
�
� M2

r2

dq

d�
= �2g�

3�
(q2 � 1)3/2

Rsc = a exp
�

3�

2g�

z�
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�


